Locality-Aware Mapping of Nested Parallel Patterns on GPUs

HyoukJoong Lee*, Kevin Brown*, Arvind Sujeeth*, Tiark Rompf†‡, Kunle Olukotun*

*Pervasive Parallelism Laboratory, Stanford University
†Purdue University, ‡Oracle Labs
High-level Languages for GPUs

- Provide higher productivity and portable performance

- Parallel patterns are becoming a popular abstraction for computations
 - map, reduce, filter, groupby, …
 - Supported by Copperhead, Lime, Accelerate, Thrust, ..
 - Provide high-level information on parallelism and internal communication

- Compilers often support a fixed mapping strategy for each pattern

```
out = in.map(f)
```

```
out = in.reduce(f)
```
Challenges

- Parallel patterns are often nested in applications
 - > 70% apps in Rodinia benchmark contain kernels with nested parallelism
- Efficiently mapping parallel patterns on GPUs becomes significantly difficult when patterns are nested
 - Many factors to consider together (e.g., coalescing, divergence, dynamic allocations)
 - Large space of possible mappings

```java
// Pagerank algorithm
nodes.map(n =>
    nbrsWeights = n.nbrs.map(w =>
        getPrevPageRank(w) / w.degree
    } )
sumWeights = nbrsWeights.reduce((a, b) => a + b )
((1 - damp) / numNodes + damp * sumWeights
```
Existing Mapping Strategies

- **1D mapping**
 - Only parallelize one of the loops (often either inner-most or outer-most)
 - Sequentially execute other loops
 - Default mapping strategies for many compilers

- **Thread-block / thread mapping**
 - Assign each outer loop iteration to a thread-block
 - Inner loop is parallelized by threads within a thread-block

- **Warp-based mapping**
 - Assign a warp (32 SIMD execution unit) to one or more outer loop iterations
 - Inner loop is parallelized by threads in a warp
Issues with Existing Mappings

\[m = \text{Matrix.rand}(nR, nC) \]
\[v = m.\text{sumCols} \]

map (i) reduce(j)

\[m = \text{Matrix.rand}(nR, nC) \]
\[v = m.\text{sumRows} \]

![Bar graph showing normalized execution time for different kernel sizes and operations (sumCols and sumRows) for three different execution modes: 1D thread-block/thread, thread-block/warp, and warp-based. The graph highlights non-coalesced memory access as a source of limited parallelism.](image)
Compiler Framework for Multi-Dimensional Mapping

- Define Mapping Parameters
 - Flexible enough to cover existing mapping strategies
 - Logical Dimension: x, y, z, ..
 - Block Size: N
 - Degree of Parallelism (DOP): Span(n), Span(all), Split(k)

- Compiler Overview

 Application
 → Compiler Front-end
 → Mapping Constraints (e.g., Dim(x) for coalescing)
 → IR Traversal & Generate Constraints
 → Memory Optimization (layout, shared mem)
 → Search for an Efficient Mapping (Score Calculation)
 → A Set of Templates for Each Pattern
 → Code Generation
Outline

■ Introduction

■ Input and Output of Mapping Analysis
 ■ IR and Mapping Parameters

■ Search for an Efficient Mapping
 ■ Mapping Constraints and Scores
 ■ Dynamic Memory Optimization

■ Evaluation

■ Conclusion
Intermediate Representation (IR)

- Input to our compiler analysis
- Based on existing parallel pattern languages / data parallel languages
- Structured computations and data structures
 - Computations

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>map</td>
<td>in map { e => e + 1 }</td>
</tr>
<tr>
<td>zipwith</td>
<td>inA.zipWith(inB) { (eA, eB) => eA + eB }</td>
</tr>
</tbody>
</table>

// Pagerank algorithm
nodes map { n =>
 nbrsWeights = n.nbrs map { w =>
 getPrevPageRank(w) / w.degree
 }
 sumWeights = nbrsWeights reduce { (a, b) => a + b }
 ((1 - damp) / numNodes + damp * sumWeights
}

- We implemented a data-parallel language around the IR
Mapping Parameters

- Result of our compiler analysis
- For each nest level, (Dimension, Block Size, Degree of Parallelism)

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td>Dim(Y), 16, Span(1)</td>
</tr>
<tr>
<td>(J)</td>
<td>Dim(X), 32, Span(all)</td>
</tr>
</tbody>
</table>

- Dimension
 - A logical dimension assigned to the index domain of a nest level
 - Compiler controls how indices in each dimension are mapped to HW threads

- Block size
 - Number of threads assigned for a given dimension

- Degree of Parallelism (DOP)
 - The amount of parallel computations enabled by a mapping
 - Controls how computations are assigned to threads
 - Span(n) and Split(k) decreases / increases DOP respectively
Degree of Parallelism (DOP)

(a) Span(1) on both dimensions
(b) Span(all) on Dim x and Span(2) on Dim y
(c) Split(3) on Dim x and Span(2) on Dim y, launch an additional combiner kernel
Comparison to Existing Mapping Strategies

- **Thread-block / thread mapping** \((DOP: I \times \min(J, \text{MAX_BLOCK_SIZE})) \)

 - Pattern (I) \:// assign a thread-block
 - Pattern (J) \:// threads (1024) in a block

 - Pattern (I) \:// DimY, 1, Span(1)
 - Pattern (J) \:// DimX, 1024, Span(all)

- **Warp-based mapping** \((DOP: I \times \min(J, \text{WARP_SIZE})) \)

 - Pattern (I) \:// assign a warp
 - Pattern (J) \:// threads (32) in a warp

 - Pattern (I) \:// DimY, 16, Span(1)
 - Pattern (J) \:// DimX, 32, Span(all)

- Flexible enough to cover existing mapping strategies
- More flexible than existing fixed strategies
- Provides a better view of similarities and differences between different mapping strategies
Outline

- Introduction

- Input and Output of Mapping Analysis
 - IR and Mapping Parameters

- Search for an Efficient Mapping
 - Mapping Constraints and Scores
 - Dynamic Memory Optimization

- Evaluation

- Conclusion
Mapping Constraints

- Prunes the mapping space
 - Dynamically generated while traversing the IR

- Constraints from common GPU optimizations (soft)
 - Maximize memory coalescing
 - Provide enough parallelism
 - Avoid thread divergence

- Constraints from GPU HW / programming model (hard)
 - Max number of threads per block
 - Synchronizations across thread-blocks is not available

- Characteristics of parallel patterns (local / global)
 - Pick the most conservative span type within the same nest level
Each soft constraint has an intrinsic weight

- Based on empirical study of their relative impact on performance
- Multiplied by the number of times the code will be executed
 - Multiply by the pattern size, discount by the branching factor

Exact values less important than the relative orderings

- Effectively prioritize constraints applied in the inner-most nest level
- Prioritizes more important soft constraint within the level

Soft constraints may conflict with each other
Search for an Efficient Mapping

Score calculation based on soft constraints
- Adds all the scores from satisfied soft constraints
- For unknown information at compile time, assume default values

Adjust DOP
- Span(all) -> Split(k)
- Span(1) -> Span(n)

Detailed decisions can also be adjusted at runtime
- Changes that can be made without changing the mapping structure (e.g., thread-block size)

Entire mapping space: exponential to the loop nests (base |DimSet| * |SizeSet| * |SpanSet|)
Dynamic Memory Optimization

- Nested patterns may require dynamic allocations per thread

```plaintext
collection map { i =>  // size I
    res = map { j => /* some func */ }  // size J
    ... // use of res
}
```

- Opt. 1: Allocate memory space for all threads before kernel launch (I*J)
- Opt. 2: Set proper offset and stride values for better memory accesses
 - Array access at logical index [j] => physical index [offset + j * stride]
 - Depends on the mapping decision from the analysis

![Diagram showing memory allocation and access patterns]
Code Generation

- Code generator has a set of high-level templates for each pattern
 - Just having a fixed template for each pattern is not sufficient
 - Different code structures are required for various mapping decisions
 - Generated code for sumRows example with below mapping parameters

```
__global__ kernel(double *m, int cols, double *out) {
    int y = threadIdx.y + blockIdx.y * blockDim.y;
    __shared__ double smem[64][32]; double local_sum = 0.0;

    for (int cidx = threadIdx.x; cidx < cols; cidx += 32)
        local_sum += m[y*cols + cidx];
    smem[threadIdx.y][threadIdx.x] = local_sum;
    __syncthreads();

    /* reduce 32 values in smem[threadIdx.y][*] */
    if(threadIdx.x == 0) out[y] = smem[threadIdx.y][0];
}
```

Level 0: Dim(Y), 64, Span(1)
Level 1: Dim(X), 32, Span(all)
Outline

- Introduction

- Input and Output of Mapping Analysis
 - IR and Mapping Parameters

- Search for an Efficient Mapping
 - Mapping Constraints and Scores
 - Dynamic Memory Optimization

- Evaluation

- Conclusion
Evaluation

- Performance comparison to manually optimized CUDA
 - Applications with nested kernels in Rodinia benchmark suite
- Flexibility of our mapping analysis
 - Compare against fixed 2D strategies
- Performance impact on real-world applications
- Correlation between score and performance

- System configuration
 - Intel Xeon X5550 (8 core, 96GB memory)
 - nVIDIA K20c GPU
Rodinia Benchmark Suite

Normalized Execution Time

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Manual</th>
<th>MultiDim</th>
<th>1-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearest Neighbor</td>
<td>1.21</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>Gaussian Elimination</td>
<td>4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFS</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hotspot</td>
<td>1.0</td>
<td>15.7</td>
<td></td>
</tr>
<tr>
<td>Mandelbrot</td>
<td>1.4</td>
<td>40.1</td>
<td></td>
</tr>
<tr>
<td>Srad</td>
<td>1.7</td>
<td>25.4</td>
<td></td>
</tr>
<tr>
<td>Pathfinder</td>
<td></td>
<td></td>
<td>2.32</td>
</tr>
<tr>
<td>LUD</td>
<td></td>
<td></td>
<td>19.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60.8</td>
</tr>
</tbody>
</table>

- **28.6x speedup over 1D mappings**
- **24% slower than manually optimized CUDA code (7 out of 8)**
Fixed 2D Mappings

<table>
<thead>
<tr>
<th>Application</th>
<th>MultiDim</th>
<th>ThreadBlock/Thread</th>
<th>Warp-based</th>
<th>Normalized Execution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian Elimination (R)</td>
<td>1.11</td>
<td>1.5</td>
<td>1.10</td>
<td>1.5</td>
</tr>
<tr>
<td>Gaussian Elimination (C)</td>
<td>1.6</td>
<td>1.5</td>
<td>1.10</td>
<td>1.5</td>
</tr>
<tr>
<td>Hotspot (R)</td>
<td>9.1</td>
<td>1.5</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Hotspot (C)</td>
<td>15.6</td>
<td>1.5</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Mandelbrot (R)</td>
<td>1.51</td>
<td>1.5</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Mandelbrot (C)</td>
<td>1.8</td>
<td>1.5</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Srad (R)</td>
<td>1.01</td>
<td>1.5</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Srad (C)</td>
<td>9.6</td>
<td>1.5</td>
<td>6.6</td>
<td>1.5</td>
</tr>
</tbody>
</table>

- Implemented applications in different ways (R: row-major, C: column-major)
- Up to 9.6x faster compared to fixed 2D mappings
- Our compiler is not sensitive to how the application is written
Application Case Studies

QPSCD: quadratic programming solver with a lock-free stochastic coordinate descent
MSMBuilder: molecular dynamics simulations and building Markov State Models
Naïve Bayes: spam document classifier
- More detailed analytical model is required to fine tune the weights (and remove false negatives)
Conclusion

- Nested parallel patterns cannot be efficiently mapped with existing fixed mapping strategies

- We implemented a compiler analysis and optimizations to automatically find an efficient mapping based on the context
 - Define a flexible mapping parameter
 - Add mapping constraints and calculate scores
 - Add memory locality optimizations

- We demonstrated with a set of applications that our compiler automatically generate high-performance GPU code, better than manually optimized code in some cases
Thank You!

Questions?