Improving the Performance of Speculatively
Parallel Applications on the Hydra CMP

Kunle Olukotun, Lance Hammond and Mark Willey
Computer Systems Laboratory
Stanford University
Stanford, CA 94305-4070
http://lwww-hydra.stanford.edu/

ABSTRACT to add support for speculative thread parallelism to a chip multipro-
cessor (CMP) [15] [19]. In this paper, we focus on improving per-

Hydra is a chip multiprocessor (CMP) with integrated support foformance with speculative thread support on the Hydra CMP [7].

thread-lev_el speculaﬂ_on. Thread-lev_el speculation provides a way, generate code for a speculative thread architecture, the program
to parallelize sequential programs without the need for data depepy gt e broken into threads. A program can be partitioned into arbi-
dence analysis or synchronization. This makes it possible t0 pargfary threads, but to minimize the effect of control hazards it is
lelize applications for which static memory dependence analysis igesirable to pick threads that are either control independent or
difficult or impossible. While performance of the baseline Hydrawhose control dependencies are easy to predict. Loop and proce-
system on applications with medium to large grain parallelism iglure program constructs provide good candidates for speculative
good, the performance on integer applications with fine-grainethreads [16]. With loops the speculative threads are the loop itera-
parallelism is unimpressive. In this paper, we describe a collectioons, while with procedures the speculative threads are the proce-
of software and hardware techniques for improving speculation peflure call and the code following the procedure call.

fc_)rmance over the ba_sellne speculative Hyd“? CMP‘. These tecEa'iven a sequence of speculative threads, it is the job of the Hydra
niques focus on reducing the overheads associated with speculatiQf) jyare to execute these threads correctly. The hardware accom-
and improving the speculation behavior of the applications USi”%Iishes this using data speculation support in the memory system,
code restructuring. When these techniques are applied to a set\gfiich records speculatively executed memory references so that
eleven integer, multimedia and floating-point benchmarks, Signifithey can be squashed when necessary. Speculative threads are exe-
cant performance improvements result. In particular, the overattuted in parallel, but commit in sequential order. Committing a
performance of the integer benchmarks is improved by seventy-fivgpeculative thread requires the thread to write out any speculative
percent. data that was created during the execution of the thread to the
sequential state of the machine. At any point before a thread is com-
mitted, it may be forced to restart due to a data dependency viola-
Keywords tion with a less speculative thread, which occurs when a speculative
thread reads a data memory location before it has been written by
Chip multiprocessor, data speculation, multithreading, performancge less speculative thread. The simplest way to deal with violations
evaluation, parallel programming, feedback-driven optimization. is to discard the speculative state and restart the speculative region

from the first instruction in the thread.
1. INTRODUCTION
Unfortunately, hardware support for speculation is not sufficient to

. . . uarantee good parallel performance for all applications. There are
Hardware support for speculative thread parallelism makes it pos’?everal reasons why parallel performance with speculative threads

gl;t;c:jepaerﬁgzlrl]zc?ezezﬂuceonrﬂalil:[zirr)rlllte:atllz?lrésr,] Y}”mg:ﬁ ;\gr:jy;ngen%%?]ucmay be limited for a particular application. The most fundamental
betweelfs eculative threaé)s the hérdware subport uar%ntees Cfl iit is a lack of parallelism in the application. This manifests itself
p ! pport g L low parallel coverage (the fraction of the sequential execution

rect program execution. This support significantly increases th me that can be parallelized using speculative threads) or reason-

scope of applications that can be automatically parallelize o
because there are many applications that have thread-level parall le coverage but low performance due to true data dependencies in

: - e parallel portion of the program that continually cause violations.
ism, but whose memory dependencies cannot be analyzed at CO%lese data dependencies may be inherent to the algorithm, or they

pile time. The Multiscalar architecture was the first architecture Kiwayjust be an unfortunate programming choice that worked well in

include this support [18]. More recently, there have been proposa Séquential execution but causes unnecessary dependencies when

the program is speculatively parallelized. Less fundamental perfor-

This appeared in the proceedings of ICS 99: The 1999 ACM mance limits are due to the software overheads associated with
International Gonference on Supercomputing. Permission to make managing speculative threads, the increased latency of inter-thread
digital or hard copies of part or all of this work for personal or icati th h instead of ist d th
classroom use is granted without fee provided that copies are not communication through memory (instead of registers), ana the
made or distributed for profit or commercial advantage and that amount of wasted work that must be reexecuted when violations
copies bear this notice and the full citation on the first page. oceur.

Copyrights for components of this work owned by others than '

ACM must be honored. Abstracting with credit is permitted. To . . L

copy otherwise, to republish, to post on servers or to redistribute The performance of speculatively parallelized applications can be
to lists, requires prior specific permission and/or a fee. improved by optimizing the applications themselves and/or the

speculation support software and hardware. Performance can be

| Centralized Bus Arbitration Mechanisms |

CPUO CPU1 CPU 2 CPU3
L1Inst.| L1DataCache & L1Inst.[L1 DataCache & L1lInst.[L1 DataCache & L1lInst.| L1 DataCache &
Cache |Speculation Support| Cache [Speculation Support| Cache [Speculation Support| Cache [Speculation Support|
CPU 0 Memory Controller CPU 1 Memory Controller CPU 2 Memory Controller CPU 3 Memory Controller

. £) A K - y
Cache Writes out, Cache Writes out, Cache Writes out, Cache Writes out,
refills invalidates in refills invalidates in refills invalidates in refills invalidates in

Write-through Bys (64b

Direct I/O

I I Read/Replace Bus (256b)

Speculation Write Buffers

DMA
Rambus Memory Interface 4_,| 1/0 Bus Interface |

TT7113]

DRAM Main Memory 1/0 Devices

On-chip L2 Cache

Figure 1. The main datapaths in the Hydra CMP.

improved by selectively choosing threads that have more parallelising extensions to a multiprocessor cache coherency protocol [5].
ism. Furthermore, compiler and manual optimization can be used fthe Multiscalar group has observed that blind speculation on all
rearrange code to reduce the likelihood of violations. Speculatiodata dependencies can severely impact performance when the spec-
runtime software can be optimized to reduce the overheads of maulation is wrong and that dynamic data dependence prediction tech-
aging speculative threads and a combination of hardware and softiques can be used to improve performance over blind speculation
ware can be used to minimize the performance losses froifi3]. Following on the Multiscalar work other researchers have pro-
violations. In this paper we show how many of these techniques cgrosed adding speculative data support to a chip multiprocessor [15]
be combined to improve the performance of speculatively paralldgll9]. Here the goal is to simplify the task of creating parallel pro-
applications on the Hydra CMP. grams for a multiprocessor. The assumption in these proposals is
that the processing units are less tightly coupled than in the Multi-
The rest of this paper describes the Hydra system and shows h@ealar architecture and so the focus of the CMP work is on extract-
the performance of Hydra on speculatively parallelized applicationthg and exploiting coarser-grain parallelism.
can be improved using both software and hardware. In the next sec-
tion, we describe previous work in thread speculation. In Section3, THE HYDRA CMP
we briefly describe the Hydra chip multiprocessor and the software

support required for speculation. In Section 4, we present aln%ydra is a chip multiprocessor with data speculation support. We

explain the performance of the baseline Hydra system on elevery. ' . -
benchmarks. In Section 5, we describe how the model used 0rlefly descrlbg the _H_ydra archltecture and software support envi

g X ronment here in sufficient detail to understand the remainder of the
divide the program into threads can be extended to expose mo

speculative parallelism and explain how violation statistics col-'{!‘)%ger’7 but the Hydra system is more completely described in [6]
lected from previous runs of a speculative program can be used @ [71.

find and eliminate unnecessary dependencies. We also describe hgw, .

the base support for speculation in the memory system can 1 Architecture

improved to reduce the effects of data dependence violations, which)))
provides further performance gains. In Section 6, we present speclihe Hydra architecture consists of 4 MIPS processors, each with a

lation performance results using these software and hardwaR&ir of private data caches, attached to an integrated on-chip sec-

enhancements. We conclude in Section 7. ondary cache using separate read and write busses, as shown in Fig-
ure 1. The processors use data caches with a write-through policy to
2. PREVIOUS WORK simplify the implementation of cache coherence. All writes propa-

gate through to the write back secondary cache using the dedicated

The first i f lative thread in th K of Kniah rite bus In order to ensure coherence, the other processors’ data
€ Tirst mention of speculative thréads was In the work of BnigNt 4 ches watch this bus — using a second set of cache tags — and

in the context OT LISP .[10]' However, the Multiscalar paradigm.[g]invalidate lines when necessary to maintain cache coherence. On-
[18] has most directly influenced the Hydra research. The Multiscasyjy communication among the caches and the external ports, such
lar paradigm takes a hardware-centric approach to extracting fingg yata cache refills, are supported by the cache-linergédeous
grained pa_lralle!lsm from Seq“e'?“a' Integer programs. Th(_e har oth buses are fully pipelined to maintain single-cycle occupancy
ware required includes processing units whose register files a[gr all accesses. Off-chip accesses are handled using dedicated
connected by a ring and a shared primary data cache with speculgzin memory and 1/0 buses. For the applications evaluated in this

tive memory support provided by an address resolution buffe the bandwidth of th b ; t f bottle-
(ARB) [4]. More recently, the speculative versioning cache wor aper, the bandw O These buses IS not a periormance botle

has eliminated the requirement of the shared primary data cache

neck. A summary of the pertinent characteristics of the Hydra CMHhe other component of the software support for speculation is the
memory system appears in Table 1.

Table 1. Hydra memory hierarchy characteristics.

runtime system. The runtime system is used to control speculative
threads through the coprocessor interface and stores to special I1/0

locations. This collection of small software control routines is used
Main to control the speculative threads currently active in the system. In
L1 Cache L2 Cache Memory our baseline system, these routines control threads created in two
CERIEeT Separate & D | Shared, on-chip | Off-chip DRAM different ways: loop iterations and. procedure calls. When a proce-
SRAM cache SRAM cache dure call is encountered, the runtime system forks off a thread to
pairs for each speculatively execute the code following the return from the call,
CcPU while the original thread executes the code within the procedure
Capacity 16KB each 2 MB 128 MB itself. If the return value from the procedure is predictable, and if no
Bus Width 32-bit connection | 256-bit read bus | 32-bit wide Ram- memory refer_enced as a side effect by the procedure is read imme-
to CPU and 32-bit write | bus connection (2 diately following the procedure return, then the two threads may
bus x DRDRAM) at run in parallel. Similarly, when@afor orpwhile loop is encoun-
full CPU speed tered, the system starts threads on all of the processors to handle
Access Time 1 CPU cycle 5 CPU cycles atleast 50 cycles iterations of the loop, which are then distributed among the new
Assoclativity 4way 4way N/A threads in a round-robin fashion. The routines must also track the
order of all speculative threads in the system in order to properly
L= SlrE 82 bytes 64 bytes 4KBpages | forward data between threads and to signal data dependency viola-
Write Policy Writethrough, no | Writeback, allo- | “Writeback” (vir- tions, which trigger exception routines that squash and restart the
write allocate cate on writes tual memory) violating thread and all threads that are more speculative. See [7]
Inclusion N/A Inclusion Includes all for further details.
enforced by L2 cached data
on L1 caches 4. BASE SPECULATION

PERFORMANCE

Thedata speculation support in Hydra allows threads to execute in . .
parallel but ensures that they commit in sequential order. The hard.1. Benchmarks and Simulation
ware guarantees that no speculative thread can change the sequen-

tial state of the processor, which is kept in the secondary cache and MethOdOIOgy
main memory, until the thread commits. Executing threads in parall—.

; evaluate our speculative system and identify potential areas for
lel causes memory data hazards. Hydra deals with WAR and WA improvement, we used eleven representative benchmarks that cover

hazards using the implicit memory location renaming that occurg .~ "... - o
significant portion of the general-purpose application space.

when a processor has speculative data in its data cache. This m?gese benchmarks are listed in Table 2. The speculative versions of

ory renaming avoids the need to stall speculative threads for the X R
memory hazards. RAW hazards caused by true data dependenc ag benchmarks were created using Hydracat. The binaries were

A S €nerated using GCC 2.7.2 with optimization level -O2 on an SGI
result in violations that force the violating processor to back up an\gvorkstation running IRIX 5.3. Currently, Hydracat only works on C

start again from the beginning of the speculative region it is cur: . X : p
rently processing. However, using the write bus to forward specul -rog?g?ssﬁ(J-I;trt]ilrig%?)\i/r?tnése#shr]::(;rrrllse)\(/er?izanirr]gnagl vv\\ilrtittlein% ?:fotge
tive data between threads running on different processors redu AN. However, from the point of view of extracting parallelism,

the occurrence of these violations. the C SPEC92 floating point benchmarks are more challenging than
réhe SPEC95 floating point benchmarks, so we would expect the

Data speculation support in Hydra consists of a set of new co o
P P Y P Qﬁrformance on SPEC95 benchmarks to be similar or better.

cessor instructions, extra tag bits which are added to the proces

data caches, and a set of secondary cache write buffers. The copro-
cessor instructions are provide an interface to the thread speculat Inout
control hardware, the tag bits are used to detect data depende Apolicati S D P S
violations between threads, and the write buffers are used to buf pplication OHIEE ata Set
speculative data until it can be safely committed to the secondg General compress SPEC95 train
cache or discarded. Integer eqgntott SPEC92 reference
3 2 Software Support grep UNIX utility [8] 190 line file
- m88ksim SPEC95 test
There is both compiler and run-time system software support fi we UNIX utility 10,000 charac-
speculation in the Hydra architecture. A source to source compi ter file
(hydraca) is used to transform €Eor andwhile loops into spec- | Multimedia ijpeg(compression)j SPEC95 train
ulativefor andwhile loops. Currently, the loops are selected by |eqer mpeg-2(decoding) MediaBench [12] test.m2v
the programmer by designating candidate loops using the — - .
and pwhile keywords. The compiler then automatically trans{ F°39 avin SPEC92 reference
forms these loops to their speculative versions by outlining the lo¢ Point cholesky Num. Recipes [17] 16400
as a procedure e}nd by analyzing the dataﬂow in the loop body ear SPEC92 reference
that any local variables that have the potential to create loop-carri - - -
dependencies are globalized simplex Num. Recipes [17] 40 variables|

Table 2. Benchmark summary.

All the performance results we present are obtained by executirige the loops in this application, because the only good candidate
the benchmarks on a detailed, cycle-accurate simulator that modédtsp (in thecmpptfunction) is too small to be effectively parallel-
the Hydra architecture described in Section 3.1. The execution timized on Hydra without significant programmer help. As a result, we
of the speculative binaries includes the time spent in the run-timesed procedure-call based speculation. Despite a reasonable
system. Our simulation environment can switch back and fortamount of parallelism in the recursiggiicksort procedure, the
between execution using the cycle-accurate simulator and executigpeculation software overheads and squashing of non-parallel pro-
directly on the real machine. Switching to the real machine allowsedures limit speedup.

us to run entire applications on the simulator by quickly executing

initialization code and redundant executions of kernels. Howevegrep: This benchmark is the well-known regular expression tool
code representing at least 95% of the original sequential executidhat matches a regular expression to each line of an input file and
time is run on the cycle-accurate simulator to ensure that the simgrints those lines that contain matching strings. The main loop of

lations are representative. the program iterates over all the lines of the input file. The specula-
tive thread version of this loop performs very well because the only
4.2. Baseline Performance dependencies that occur are during file input and when a match is

found. However, most lines do not match the expression and so

The performance of the base Hydra CMP is shown in Figure 2. TH¥CE they have been read from the input file they are processed
cm’npletely in parallel.

speedups represent the execution time of one of the processors
Hydra running unmodified C code divided by the execution time of - . .
. . . . 88ksim: This program performs simulates a Motorola 88000
the speculative Hydra CMP running s_peculatlvely parallelized ISC CPU on a Eycl%-by-cg/cle basis. It consists of a single, large
code. We see that the performance is highly dependent on the appll : :

cation and varies from 0.6 to 3.4. To understand the pen‘ormancréStrUCtlon execution loop that is potentially parallel, but unfortu-

profile in more detail, we explain how each benchmark was Ioaragately also accesses several global variables that tend to exhibit true

X 7 : ependencies in a manner that is very difficult for a compiler to
lelized and what limits the speculative parallel performance on th tatically analyze. In the speculative version of m88ksim, accesses

benchmark to these global variables cause a considerable number of violations.
The execution time that is lost when these violations occur limits
speedup.
49 wc: This is the UNIX word count utility, which counts the number
of characters, words, and lines in an input file. It primarily consists
3.5 of a single character processing loop that is very small — loop iter-
ations have only 20-40 instructions, on average. In addition, there
3 are loop-carried dependencies, such as the file pointén andord
indicator. The speculative version of this tiny loop is slowed down
251 by the speculation software overheads and the relatively high inter-
processor communication latencies, caused by communicating
5] through memory instead of registers. Consequently, wc slows down
by a considerable amount.
1.5+ ijpeg (compression): This is an integer, multimedia benchmark
that compresses an input RGB color image to a standard JPEG file,
1 using a lossy algorithm consisting of color conversion, downsam-
pling, and DCT steps. The multiple loops in these steps posses a
0.5 large amount of inherent parallelism, but were originally coded so
that the parallelism is often obscured by existing program seman-
o tics, such as numerous pointers, poor code layout, and odd loop
sizes. The speculatively parallel version of ijpeg exposes this paral-
2 8§ & E & 2 B £ 2 3 3 lelism, but performance is limited by parallel coverage and specula-
e £ 5 2 2 2 35 3 ¢ = 0N SO
s o % = £ < € tion software overheads.
I a} @ < ‘0
8 E S

mpeg (decoding): This is a benchmark from the Mediabench
) . . suite [12] that decodes a short MPEG-2 video sequence to an RGB
Figure 2. Baseline speculation speedup. frame buffer. Parallelization occurs at the macro block level, where
the variable-length decoding (VLD) is performed. The VLD step is
compresgcompression): Thishbenchmarkompressesinpufile completely serial, but speculation is able to overlap the processing
using entropy encoding. Compress is dominated by a single smalerformed during the other, more parallel stages of decoding
loop (about 100 instructions, on average) that has complex contrdDCTs and motion estimation) with the serial VLD step of later
flow. As observed in [18] and contrary to the analysis in [19] therenacroblocks. This parallelization technique is described in greater
is a loop-carried dependency that limits the parallelism in this loopdetail for a hand-parallelized version of mpeg in [9]. Despite a sig-
However, there are opportunities to overlap the 1/O routines of semificant amount of potential parallelism, MPEG-2 decoding slows
arate loop iterations. The limited parallelism and small thread sizdown because of a loop-carried dependency that unnecessarily seri-
in compress are overwhelmed by the speculation software ovealizes execution.
heads on the baseline system.
alvin: This is a neural network training application for autono-
eqntott: This benchmark performs logic minimization on a set ofmous land vehicle navigation. It is composed of four key proce-
input equations. Unlike the other benchmarks, we did not paralledures which are dominated by doubly-nested loops. Although these

CPU Maximum
Coverage Restarts utilization Speculative
Application (%) per thread (%) write state
compress 100 6.4 28 24
eqntott 93 12.1 32 40
grep 90 11 75 11
m88ksim 94 155 29 28
we 100 46 69 8
ijpeg 60 2.35 42 32
mpeg 92 1275 25 56
alvin 96 0.31 81 158
cholesky 91 0.88 74 4
ear 96 0.32 97 82
simplex 86 0.14 60 14
Table 3. Speculation performance characteristics. The speculative write state

is presented in terms of 32 byte cache lines.

loops are parallel, the parallelism is obscured by the way in whicBection 5). Except for the ijpeg and simplex benchmarks, more than
the application is coded with pointer variables. However, thes€0 percent of each benchmark can be speculatively parallelized.
loops are easily speculatively parallelized and result in good paraHowever, high coverage does not guarantee good performance
lel performance. when there are a significant number of violations. The number of
restarts per committed thread (restart rate) gives a good indication
cholesky: Cholesky decomposition and substitution is a well-of the inherent parallelism in an application. As expected, the
known matrix kernel. The multiply nested loops in the decomposibenchmarks fall into two main classes: integer benchmarks with
tion procedure have significant amounts of parallelism, but theyestart rates that are much greater than one and numerical bench-
also contain loop-carried dependencies that occur infrequently. Imarks with restart rates less than one. The combination of the cov-
conventional parallelization, these dependencies would have to kgage, the restart rate, the amount of work that is lost due to the
detected and synchronized, but with speculation we can oblivioushestarts, and the speculation software overheads determines the
parallelize them. The loops in the substitution routine are also pafraction of the time the processors are doing useful work (CPU uti-
allel, but here each loop is written in so that a loop-carried depemization), which ultimately determines performance.
dency serializes the speculative loop. Fortunately the
decomposition procedure dominates the sequential execution tindekey architectural metric is the size of the speculative write state.
and speedup is still quite good. This metric is important because it indicates the feasibility of
implementing a Hydra CMP architecture with reasonably sized
ear: This benchmark simulates the propagation of sound in thepeculative write buffers that achieves good performance. Table 3
human inner ear. The conventional wisdom is that the structure dists the number of 32 byte cache line buffers required to hold the
this program is a sequential outer loop and a sequence of parallelaximum size write state for the eleven benchmarks. The results
inner loops [11]. The parallel inner loops are extremely fine grainethdicate that a buffer size of 64 lines (2KB) per processor is suffi-
and therefore are not good candidates for speculative threads on ¢ent for all but the alvin and ear benchmarks. These two applica-
Hydra CMP. However, the outer loop can be speculatively parallekions would require 8KB write buffers for maximum performance.
ized and achieves very good speedup. The dependent outer logpwever, it would be possible to reduce the memory requirements
pipelines across the processors quite well because each iteratioroisthe alvin benchmark to an arbitrary degree simply by using loop
only dependent on the previous iteration in a way that allows muciteration chunking on the inner loop of alvin, as described in Sec-
of the computation to be overlapped. Memory renaming ensuregon 5.2.3, instead of our original scheme of speculating on the
that, even though each iteration of the outer loop uses the same dataer loop. Lastly, the Hydra memory system is capable of handling
structures, each processor dynamically gets a private copy. overflows simply by temporarily halting execution on the specula-
tive processor that experiences the buffer overflow. Thus, it may be

simplex: This kernel solves problems in linear programming. Thepossible to capture the write state from most iterations using a
three procedures in this kernel have a number of small loops. Thgnaller buffer, as we showed in [7].

dependences between the iterations of these loops are not at all

obvious. The speculative parallelization of these loops achieve5. |MPROVING SPECULATION

good speedup, but less than the other numerical benchmarks. This

is mainly due to the speculation software overheads that dominate PERFORMANCE

the short running loops.

- There are four key problems that need to be addressed to improve
Table 3 shows some key performance characteristics for the Speclsy oy jation performance: 1) reducing the performance losses from
lative versions of the eleven benchmarks. Except for the resul e speculation software overheads, 2) reducing the performance
from the eqntott benchmark, the data for this table was 9°”eCteﬁinpact of inter-thread communication through memory, 3) increas-
with the speculation control software optimizations to be discussegl 1o amount of parallelism in the program that is exposed to the
in Section 5.1 (but without the other optimizations discussed "Epeculation system, and 4) reducing both the number of violations

Procedure
and Loops Loop-only
Routine Use Overhead Overhead
Procedures Start Procedure Forks off the code following a procedure call to ~70 —
another processor, speculatively
End Procedure Completes processing for a procedure that has ~110 —
forked off its completion code, and starts run-
ning another speculative task on the CPU
Loops Start Loop Prepares the system to speculatively exectite ~70 ~30
loop iterations, and then starts execution
End of each loop Completes the current loop iteration, and then ~80 12
iteration attempts to run the next loop iteration (or spec-
ulative procedure thread, if present)
Finish Loop Completes the current loop iteration, and then ~80 ~22
shuts down processing on the loop
Support Violation: Local Handles a RAW violation committed by thig ~25 7
processor
Violation: Receive Restarts the current speculative thread on this ~80 7
from another CPU processor, when a less speculative procesgor
requires this
Hold: Buffer Full Temporarily stops speculative execution if the 15 12
processor runs out of primary cache contro|
bits or secondary cache buffers
Hold: Exception Pauses the processor following a SYSCALL 25 + OS time 17 + OS time
instruction, until it is the non-speculative,
“head” processor

Table 4. Overheads of key speculation software routines.

and the work lost when violations occur. We propose a simple soldlar feedback could be obtained by adding speculative load PC
tion to the first problem in Section 5.1. Section 5.2 outlines codenemory to each processor, broadcasting store PCs along with data
motion techniques that help attack both the third and fourth probsn the write bus, and then interpreting the results from these hard-
lems. Finally, hardware techniques to address the fourth are presare structures using instrumentation code built into the specula-
sented in Section 5.3. The second problem requires fundament&dn software routines (at profiling time only — normally the
changes to the underlying interprocessor communication mechaverhead imposed by such code could be eliminated). We devel-
nism which are beyond the scope of this paper. oped a tool to translate the load and store addresses produced by the
simulator to source code locations, for easier analysis. Armed with
this information, we attempted to reduce the number of violations
caused by the most critical dependencies using synchronization,
The protocol software required to handle loops is much simplefode motion, and loop transformations. While we used the feedback
than the protocol software for procedure calls. As soon as a lodpformation from the violation statistics to make manual modifica-
starts, its iterations are distributed among the processors in a sifns to our benchmarks, many of these modifications could be per-
ple, round-robin fashion. In contrast, procedure calls occur one at/§'med using a feedback-directed compiler targeted to a
time, on arbitrary processors, in an unpredictable pattern. As gPeculatively parallel architecture.

result, the control software must be able to handle a comple

dynamically changing list of speculative threads. This complexitﬁ-z-l- Explicit Synchronization

does not lend itself to simple, fast software control routines, as the) L N
routines must maintain a dynamic list of threads. Being able to déhe first technique we used to minimize effects from these critical
both loops and procedures simultaneously increases the complexfita dependencies was to add explicit synchronization to cause the
of both, slowing down the system even more. By limiting Specu|adependent thread to .stall instead pf causing a (;iependency violation.
tion to loops alone, we can dramatically simplify the control rou-This was achieved simply by adding a way to issue a non-specula-
tines so they require many fewer instructions. Table 4 shows tHéve load instruction even while the processor is executing specula-
overhead reductions we were able to obtain by simplifying severdively. As depicted in Figure 3, this special load may be used to test
key loop-control routines so that they would only work in an envi-lOCk variables that prOt.eCt the critical regions of code in Wthh pa_lrs
ronment without procedure speculation. The savings obtained loads and stores exist that cause frequent dependency violations.
simplification of the routine that must be called at the end of eacRefore entering a critical region, synchronizing code spins on the

loop iteration and the violation-processing routines have the modpck variable until the lock is released by another processor.
impact on overall performance. Because the special load is non-speculative, a violation does not

occur when the lock is released by a store from another processor.
Once the lock is freed, the speculative processor may perform the
load at the beginning of the critical region. Finally, when a proces-
sor has performed the store at the end of the region, it updates the
lock so that the next processor may enter the critical region. This
Our simulator produces output that explicitly identifies loads angrocess eliminates all restarts caused by dependent load-store pairs
stores in the application that cause violations. In a real system, siriir the critical region, at the expense of forcing the speculative pro-

5.1. Loop-only Speculation

5.2. Using Feedback From Violation
Statistics

freely. More importantly, we were frequently able to rearrange code
to make stores to shared variables occur earlier. Induction variables
are an obvious target for early stores. Since the store that updates
the induction variable is not dependent upon any computation
within the loop, these can safely be moved to the top of the loop
sync load LOCK body. When this is done, a “local” copy of the old value is made at
rele?gerel_éCK :wg :ggg tggﬁ the same 'Flme, with a small amount Qf additional code, and thls
Syne load LOCK local copy is used throughout the remainder of the loop body while
load X the “global” variable is used by other processors starting their own
loop iterations. Other variables, tidd depend upon results calcu-
lated in a loop iteration, will not be improved as dramatically by
scheduling their critical stores early, but performance can often still
be improved significantly over unmodified code using these tech-
nigues.

Thread #n Thread #n+1

TIME

store X

release LOCK fo #n+2

It should also be noted that code motion on a speculative processor
is somewhat different from that on a conventional multiprocessor,

Non-critical speculative execution since only the most critical loads and stores of variables need to be
Critical region in speculative execution moved to reduce the potential for restarts. For example, variables
Spinlock on explicit synchronization that often — but not always — act like induction variables can be
speculatively treated like induction variables at the top of the loop.
Figure 3. Explicit synchronization. Should they later act differently, the variable may be re-written,

probably causing restarts on the more speculative processors. How-
cessors to serialize through the critical regions, eliminating angver, as long as the value computed and written early is used most
possibility of finding parallelism there. The lock handling code alscof the time, the amount of available parallelism in the program may
adds a small software overhead to the program. be vastly increased.

Similar synchronization mechanisms have been proposed before. fior the measurements taken in this paper, we did all code motion by
[19], special loads and stores were used to pass data between grand based on violation statistics provided by our simulator. How-
cessors directly and perform explicit synchronization at the samever, while synchronization may easily slow down a program if
time. This method avoided the overhead of extra synchronizatioimplemented in an improper fashion, code motion will rarely
code, but required more complex hardware synchronization mechdegrade performance. Hence, a feedback-directed compiler could
nisms to handle the special loads and stores. An all-hardware ddrarform this job almost as well as a human programmer by aggres-
dependence prediction and synchronization technique was explorétvely moving references that frequently cause violations within
in [13] for use with the Multiscalar architecture. Special hardwarespeculative code, up to the limits imposed by existing data and con-
structures tracked dependencies and then automatically used syfel dependencies, in order to reduce the critical path between
chronizing hardware to prevent restarts due to dependent load-stgfependent load-store pairs.
pairs. This hardware-based technique allows a limited degree of o)
automatic synchronization even without programmer interventiond.2.3. Loop Body Slicing and Chunking
and it would be adaptable for use on a Hydra-like architecture. An
alternative design for a superscalar architecture that tracks sets Mbre radical forms of code motion and thread creation are possible
stores that commonly supply data to a following, dependent loally breaking up a loop body up into smaller chunks that execute in
was proposed in [2]. Finally, we presented some preliminary resuligarallel or its converse, combining multiple speculative threads
on the use of synchronization with the compress benchmark in [7{ogether into a single thread. With the former technique, loop slic-
ing, a single loop body is spread across several speculative itera-
5.2.2. Code Motion tions running on different processors, instead of running only as a
single iteration on a single processor. In the latter case, loop chunk-
While explicit synchronization prevents critical dependencies frorring, multiple loop iterations may be chunked together into a single,
causing violations, it also forces the speculative processors to sel@rge loop body. Loop bodies that were executed on several proces-
alize their execution. For small critical regions, this is perfectlysors are combined and run on one. This generally only results in
acceptable, but for large ones it can easily eliminate all of the pardpetter performance if there are no loop-carried dependencies
lelism that speculative threads are attempting to exploit. To avoitiesides induction variables, which limits the versatility of loop
this situation the second technique we use to improve speculati@unking. However, if a parallel loop can be found, chunking can
performance is to manually move source code lines with dependeatiow one to create speculative threads of nearly optimal size for the
loads and stores in order to shrink the critical path between frespeculative system. Figure 4 shows conceptually how slicing and
quently violating load-store pairs. This makes it possible to reducehunking work.
the number of violations and often increases the inherent parallel- .)
ism in the program by lengthening the sections of code that coul@/hile loop chunking only needs to be performed if the body of the
be overlapped on different processors without causing violations. 100p is so small that the execution time is dominated by speculation
overheads, the motivation for loop slicing are more complex. The
This works in two ways. At the tops of critical regions, loads carprimary reason is to break down a single, large loop body, made up
sometimes be delayed by rearranging code blocks in order to mowé several fairly independent sections, into smaller parts if they are
code without critical dependencies higher up in the loop bodymore optimally sized for speculation. In a very large loop body a
However, this is usually only possible in large loops built up fromsingle memory dependence violation near the end of the loop can
several non-dependent sections of code that can be interchangesult in a large amount of work being discarded. Also, the large
loop body may overflow the buffers holding the speculative state.

Original Loop with 4 iterations

5.3. Hardware Checkpointing

Another technique to prevent large quantities of work from being
discarded after violations is to provide a mechanism for taking extra
checkpoints in the middle of loop iterations. The basic speculation
system takes a checkpoint of the system state only at the beginning
of a speculative thread, and must return to that checkpoint after
every violation. A possible technique to save time on restarts is to
take an extra checkpoint whenever a violation-prone load actually

Normal Sliced into 2 occurs. That way, if the load really does cause a violation later, the
Speculation: Chunked: parts/iteration: work done by the speculative processor before the bad load doesn't
4 threads 2 threads 8 threads need to be discarded, because the processor will be able to return to

the machine state just before the load.

Hardware checkpointing requires four key mechanisms. First, a
hardware mechanism must be installed to track the PCs of loads
that tend to cause violations. When one of these loads is encoun-

tered, the mechanism must signal the speculative hardware to take a
Figure 4. Loop body chunking and slicing. checkpoint. If load PCs are already recorded in order to allow viola-
tion statistics tracking, as described in Section 5.2, this will be a

Buffer overflow prevents a speculative processor from making forfairly minor addition. The other three items are necessary to take
ward progress until it becomes the head, non-speculative processthe checkpoints themselves. Backup copies of the register file are
s0 this should normally be avoided whenever possible. Loop slicingecessary to hold the register file state at the checkpoint. These
is also a way to perform code motion to prevent violations. If ther&®ackups are not normally necessary, since checkpoints are usually
is code in the loop body that calculates values that will be used iftade during speculation software routines, when the register file is
the next loop iteration and this code is nstiallydependent upon in & well-known state. However, checkpoints made at violating
values calculated earlier in the same loop iteration, then this codeads may come at arbitrary times, when the register file is in an
may be sliced off of the end of the loop body and assigned to iﬁrbltrary state. From .a har_dware_pOInt of y!eW,. this addition |_S the
own speculative thread. In this way, the values calculated in th&ost troublesome, since it requires modifications to the existing
sliced-off region are essentially “precomputed” for later iterationsprocessor’s register file, where many high-speed signals may be
since they are produced in parallel with the beginning of the |00§ﬁected. L_eS_S problematic are additional sets of bits in the _pnmary
iteration. The advantage of slicing over normal code motion is thatache to indicate that words have been loaded (“read” bits) and
no data dependency analysis is required to ensure it is legal to p&dditional, smaller store buffers before the secondary cache. For
form the code motion, since the violation detection mechanism wilfach checkpoint, a new set of “read” bits and store buffers are
still enforce all true dependencies that may exist. needed to track the speculative state. The other speculation control
bits in the primary cache may be safely shared among all the check-
Loop chunking may be implemented in a compiler in a similarpoints, to reduce the hardware requirements. The store buffers do
manner to the way loop unrolling is implemented today, since bothot need to grow significantly in overall memory size, because each
are variations on the idea of combining loop iterations together. lariginal monolithic speculative thread now has its stores scattered
fact, the two operations may be merged together, so that a loop@yer several smaller checkpoint store buffers. Only a relatively
unrolled as it is chunked into a speculative thread. As a result, adémall overall size increase is necessary to handle the inevitable load
ing this capability to current compilers should not be difficult.imbalance that will occur among the different checkpoints.
Effective slicing, however, will require more knowledge about the
execution of a program than loop unrolling, although the ability t®d. IMPROVED SPECULATION
analyze the control structure of the application combined with vio-
lation statistics should be sufficient. Slicing should not be per- PERFORMANCE
formed indiscriminately because it may allow speculative
overheads to become significant and/or it may result in significarifter applying the software optimizations to the benchmarks and
load imbalance among the processors if some slices are much larglee hardware enhancements to the Hydra simulator, we collected a
than others. The former problem will obviously slow the systemmew set of performance results. These results are shown in Table 5
down, while the latter problem will degrade performance in the curand Figure 5. From these results it is clear that the lower overheads
rent Hydra design, since a speculative processor that completes d&loop-only speculation provide significant performance improve-
assigned thread must stall until it becomes the head processor, wasients for most benchmarks. The most dramatic improvement is
ing valuable execution resources in the process. This problem caeen with the wc benchmark, whose performance more than dou-
only be overcome by making the speculation system allow multipléles. This is consistent with wc's small loop body, that was com-
speculative regions within each CPU, so that a processor that completely dominated by the speculation software overheads in the base
pletes a speculative region may immediately go on to another whilein-time system.
it waits to commit the results from the first. However, implementing
this capability has significant hardware overheads [7]. We were able to optimize five (compress, egntott, m88ksim, mpeg,
and cholesky) of the eleven benchmarks using the optimizations
described in Section 5.2.

After With
Procedures Software Hardware
Application and Loops Loops Only Optimization Checkpoints
General Integer compress 1.00 1.42 1.57 1.71
eqntott 1.15 — 1.75 1.8
grep 2.65 2.86 — 2.85
m88ksim 1.05 1.13 1.45 1.56
we 0.62 1.57 — 1.64
Multimedia Integer ijpeg (compression) 1.31 1.56 — 1.6
mpeg (decoding) 0.90 0.96 2.14 2.14
Floating Point alvin 2.79 3.02 — —
cholesky 2.71 2.85 3.16 3.25
ear 3.44 3.87 — 3.88
simplex 1.83 2.67 — 2.72
Table 5. Performance with the various system enhancements.
4
B Original Speedup
3.5] Low-Overhead Loops
3 Optimized Software Z
Checkpointin
- Kl pointing
27 7-
—
1.5 7]
’ ’7
l,
0.5
0- T T T T T T T T T T \
compress eqntott grep m88ksim we ijpeg mpeg alvin cholesky ear simplex

Figure 5. A performance comparison of the baseline system and the enhanced systems.

compress: Synchronization was added to compress to prevent
the key loop-carried dependency from causing violations. This
reduced the number of restarts by a factor of 3 (to 2.1 per itera-
tion), allowing a greater speedup.

egntott: The optimization of egntott is a actually a change to

the speculation software. Instead of speculating on all proce-
dure calls, we modified the system so that only calls to the
recursivequicksortprocedure generate new speculative threads.
This eliminates the performance losses from blind procedure
speculation of procedures with little parallelism.

m88ksim: The large loop body in m88ksim was sliced to

expose parallelism within the loop body and to allow code
motion for a data value that is read early in each iteration, but is
normally computed late in the previous iteration. This code

motion decreased the number of restarts by a factor of 5 (to 3.1
per iteration), as the amount of available parallelism was dra-
matically increased.

mpeg: The performance of the mpeg-2 benchmark is improved
substantially by moving an induction-like variable update from
the end of the loop body to before the time-consuming DCT
step. This code motion makes it possible for DCTs of multiple
macroblocks to overlap. The same performance improvement
was also achieved with slicing. As with m88ksim, the additional
parallelism exposed by these modifications reduced the number
of restarts by a factor of 5 (to 280 per iteration). Our specula-
tively parallel version of this code was actually faster than the
macroblock-based hand-parallelized version in [9], because the
speculative system does not have to synchronize between pro-
cessors in a conservative fashion.

After With
Procedures Software Hardware
Category and Loops Loops Only Optimization Checkpoints
General Integer 1.04 1.45 1.73 1.81
Multimedia Integer 1.07 1.19 1.80 1.80
Floating Point 2.56 3.04 3.12 3.15
Total 1.33 1.71 2.10 2.14

Table 6. Harmonic mean summaries of performance results.

cholesky: In the cholesky substitution program stage, theour applications. Violation statistic gathering mechanisms allowed
direction of the inner loop is reversed so that the loop carried 10 identify data-dependent pairs of loads and stores in the bench-

dependency occurs on the last loop iteration, instead of the firg1arks that frequently resulted in violations. On half of our applica-
This allows the inner loop iterations from consecutive outetions, we were able to use this information to guide several software

loop iterations to overlap. optimization techniques that modified parts of the original source
code. These modifications also improved performance significantly.

These modifications resulted in significant performance improveFinally, we implemented a hardware checkpointing scheme that
ments in these benchmarks, as is shown in Table 5. In particular, vaovides nearly optimal performance by eliminating most of the

were able to achieve a speedup of 2.14 on mpeg, whereas the be@lay caused by frequently violating loads. The performance gains
line system slowed down. that we were able to achieve with hardware checkpointing would

probably not justify the investment in hardware required to imple-
With eight hardware checkpoints per processor, the performandgent this technique.
improvements from hardware checkpointing on the optimized soft-
ware are quite modest. Furthermore, mixing explicit software synEgntott was the only benchmark that whose performance was not
chronization and hardware checkpointing is not useful, based diproved by the software optimization techniques. Much of the
our observations with the compress benchmark. In effect, hardwagxecution time in eqntott is dominated by a recursive quicksort pro-
checkpointing is an optimistic form of synchronization — a form ofcedure call instead of an iterative loop of reasonable size, and so
“wait-free” synchronization. As a result, software synchronizationour loop-based techniques were of little use. However, by manually
just provides additional overhead, slowing down the system whilémiting procedure speculation to the key quicksort routine, instead
supplying little or no benefit, as it is redundant. of speculating throughout the program, we were able to get a signif-

icant improvement. This strongly indicates that procedure specula-
Table 6 summarizes the gains from these improvements for each ign is still a viable alternative for environments where it can be
the major application classes using the harmonic means used judiciously (Java is one such environment [1]). This will be

especially true if the overheads can be reduced through the addition
7. CONCLUSIONS of specialized hardware to accelerate the procedure speculation
software.

In this paper, we have shown that a few simple optimization techy e ra) our results demonstrate that there is a promising migration
niques can dramatically improve the performance of the Hydra w from our current, simple sequential-to-speculatively parallel
CMP on sequential programs executed as a sequence of speculaiiyyersion tools, such as hydracat, to more sophisticated compila-
threads. We achieved a 60 percent overall performance improvge, 1oois that can optimize code for a speculatively parallel archi-
ment on the eleven benchmarks and a 75 percent performanféﬁtture. Today, these optimizations still require programmer

improvement on general integer benchmarks. intervention, but it should be possible to automate them signifi-

We began with our baseline architecture from [7], which extract antly, allowing a speculatively parallel CMP to be competitive

speculative parallelism from procedures and loops. This architec-ith a conventional wide-issue out-of-order machine on many inte-
ture is effective at exploiting speculative parallelism when Iargeqer applications [14]. At the same time, the CMP should be able to

. ; . hieve higher performance on inherently parallel applications,
?OT?# en tffogiiﬁgrsg?rilts& ggﬁg;ﬁignéelﬂqghnis gtpel I.ngevrgvﬁ, ci)tur:zigsdlig ch as floating point numerical code anq multimedia applications,
ficulty extracting parallelism from conventional integer applica- han a comparable cost superscalar architecture.

tions, sometimes slowing the applications down. A key proble

with the baseline Hydra speculation implementation is the hi;hB' ACKNOWLEDGMENTS

overhead incurred by the speculation software to properly handle

both procedures and loops. This problem is especially acute wifhhis work was supported by DARPA contracts DABT 63-95-C-
integer applications because the number of overhead-incurring089 and MDA 904-98-C-A933.

restarts is higher due to a larger number of dependencies between

loop iterations and among procedures. Lastly, procedures typical@- REFERENCES
degrade performance because too much time is spent starting spec-
ulative threads for procedures that turn out to have little parallelisnil] M. Chen and K. Olukotun, “Exploiting method-level
parallelism in single-threaded Java prograrRsgceedings of
Parallel Architectures and Compilation Techniques (PACT
98), pp. 176-184, Paris, France, October 1998.

G. Z. Chrysos and J. S. Emer, “Memory dependence
prediction using store setsProceedings of 25th Annual

As an initial optimization technique, we eliminated procedures and
focused on making loop iteration speculation run as quickly as pos-
sible, with much lower speculation software overheads. This effor2]
was very successful and resulted in significant speedups on most of

(3]

[4]

[5]

(6]

[7]

(8]
9]

[10]

[11]

International Symposium of Computer Architectyme. 142—
153, Barcelona, Spain, June 1998.

M. Franklin and G. S. Sohi, “The expandable split window
paradigm for exploiting fine-grain parallelisnPtoceedings
of the 19th Annual International Symposium on Computer
Architecture pp. 58-67, Gold Coast, Australia, May 1992.

M. Franklin and G. Sohi, “ARB: A hardware mechanism for [13]
dynamic reordering of memory references,|EEE
Transactions on Computergol. 45, no. 5, pp. 552-571, May
1996.

S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi,[14]
“Speculative versioning cacheProceedings of the Fourth
International Symposium on High-Performance Computer
Architecture (HPCA-4)Las Vegas, NV, February 1998.

L. Hammond and K. OlukoturConsiderations in the Design

of Hydra: a Multiprocessor-on-a-Chip Microarchitectyre [15]
Stanford University Computer Systems Laboratory, Technical
Report No. CSL-TR-98-749, Stanford University, February
1998.

L. Hammond, M. Willey, and K. Olukotun, “Data speculation
support for a chip multiprocessorProceedings of Eighth
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
VIII), pp. 58-69, San Jose CA, October 1998.

B. Kernighan and R. Pike, The Practice of Programming[17]
Reading, Massachusetts: Addison-Wesley, 1999.

E. Ilwata and K. Olukotun, Exploiting coarse-grain
parallelism in the MPEG-2 AlgorithpStanford University [18]
Computer Systems Laboratory, Technical Report CSL-TR-
98-771, September 1998.

T. Knight, “An architecture for mostly functional languages,”
Proceedings of the ACM Lisp and Functional Programming[19]
Conferencepp. 500-519, August 1986.

S. Keckler, W. Dally, D. Maskit, N. Carter, A. Chang, and W.
Lee, “Exploiting fine-grain thread level parallelism on the
MIT multi-ALU processor,” Proceedings of 25th Annual
International Symposium on Computer Architectye 306—

(12]

(16]

317, Barcelona, Spain, June 1998.

C. Lee, M. Potkonjak, and W. Mangione-Smith,
“MediaBench: A tool for evaluating and synthesizing
Multimedia and communications system&foceedings of
30th Annual International Symposium on Microarchitecture
Research Triangle Park, NC, December 1997.

A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi,
“Dynamic speculation and synchronization of data
dependences,”Proceedings of 24th Annual Int. Symp.
Computer Architecturepp. 181-193, Denver, CO, June 1997.

K. Olukotun, K. Chang, L. Hammond, B. Nayfeh, and K.
Wilson, “The case for a single chip multiprocessor,”
Proceedings of the 7th Int. Conf. for Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
VII), pp. 2-11, Cambridge, MA, 1996.

J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. S. Lam,
and K. Olukotun,Software and Hardware for Exploiting
Speculative Parallelism in MultiprocessorsStanford
University Computer Systems Laboratory Technical Report
CSL-TR-97-715, Stanford University, February 1997.

J. Oplinger, D. Heine, M. Lam, and K. Olukotum Search of
Speculative Thread-Level ParallelisrBtanford University
Computer Systems Laboratory Technical Report CSL-TR-98-
765, July 1998.

W. H. Press, S. A. Teulosky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in C: The Art of Scientific
Computing Cambridge: Cambridge University Press, 1992.

G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar
processors,’Proceedings of the 22nd Annual International
Symposium on Computer Architectupp. 414—425, Ligure,
Italy, June 1995.

J. G. Steffan and T. Mowry, “The potential for using thread-
level data speculation to facilitate automatic parallelization,”
Proceedings of the Fourth International Symposium on High-
Performance Computer Architecture (HPCA-#as Vegas,
NV, February 1998.

