

The Jrpm System for Dynamically Parallelizing Java Programs

Michael K. Chen
Stanford University

mikey@hydra.stanford.edu

Kunle Olukotun
Stanford University

kunle@ogun.stanford.edu

Abstract
We describe the Java runtime parallelizing machine

(Jrpm), a complete system for parallelizing sequential
programs automatically. Jrpm is based on a chip
multiprocessor (CMP) with thread-level speculation
(TLS) support. CMPs have low sharing and
communication costs relative to traditional
multiprocessors, and thread-level speculation (TLS)
simplifies program parallelization by allowing us to
parallelize optimistically without violating correct
sequential program behavior. Using a Java virtual
machine with dynamic compilation support coupled with
a hardware profiler, speculative buffer requirements and
inter-thread dependencies of prospective speculative
thread loops (STLs) are analyzed in real-time to identify
the best loops to parallelize. Once sufficient data has
been collected to make a reasonable decision, selected
loops are dynamically recompiled to run in parallel.

Experimental results demonstrate that Jrpm can
exploit thread-level parallelism with minimal effort from
the programmer. On four processors, we achieved
speedups of 3 to 4 for floating point applications, 2 to 3
on multimedia applications, and between 1.5 and 2.5 on
integer applications. Performance was achieved by
automatic selection of thread decompositions by the
hardware profiler, intra-procedural optimizations on
code compiled dynamically into speculative threads, and
some minor programmer transformations for exposing
parallelism that cannot be performed automatically.

1. Introduction and Overview
As the limits of instruction-level parallelism (1 – 10s

of instructions) with a single thread of control are
approached [44], we must look elsewhere for
architectural improvements that can speedup sequential
program execution. Coarser grained parallelism, like
fine-grained thread-level parallelism (10 – 1,000s of
instructions), is a potential area for exploration. This
type of parallelism is not exploited today due to
limitations of current multiprocessor architectures and
parallelizing compilers.

Traditional symmetric multiprocessors (SMPs)
[13][22] have been most effective at exploiting coarse
grained parallelism (>1,000s of instructions). The high
cost of inter-processor communication in these systems,
generally >100s of cycles, eliminates any potential
speedups for fine-grained parallel tasks that either have
true dependencies or closely shared cache lines.

Modern compilers that perform array dependence

analysis can parallelize Fortran-like numerical
applications on traditional multiprocessors
[2][5][20][38]. Unfortunately, numerous challenges
have made automatic compiler parallelization of general
integer programs difficult. Analyzing pointer aliasing,
control flow, irregular array accesses, and dynamic loop
limits as well as handling inter-procedural analysis
complicate static dependence analysis [3]. These
difficulties introduce imprecision into dependence
relations, limit the accuracy of parallelism estimates, and
force conservative synchronization to safely handle
potential dependencies.

Our paper describes the Java runtime parallelizing
machine (Jrpm), a complete system that automatically
parallelizes sequential programs using thread-level
parallelism. This system takes advantage of recent
developments that now enable a different approach to
automatic parallelization for small multiprocessors (2 – 8
CPUs). The key components of this system are: a chip
multiprocessor that provides low-latency inter-processor
communication, thread speculation support that allows us
to parallelize optimistically, a hardware profiler for
identifying parallel loops from program execution, and a
virtual machine environment where dynamic
optimizations can be performed without modifying
source binaries.

• Chip multiprocessor – Jrpm is based on the
Hydra chip multiprocessor (CMP) [32]. Decreasing
feature size and increasing transistor counts now allow
chip multiprocessors to be a reality [6][14][24][42].
Chip multiprocessors combine several CPUs onto one
die with a tightly coupled memory interface. In this
configuration, inter-processor sharing and
communication costs are significantly less than in
traditional multiprocessors. The reduced communication
costs make it possible to take advantage of fine-grained
thread-level parallelism.

• Thread-level speculation – Hydra includes
support for thread-level speculation (TLS)
[10][21][29][40]. TLS allows a sequential program to be
divided into arbitrary chunks of code, or threads, to be
executed in parallel. TLS hardware ensures memory
accesses between threads maintain the original sequential
program order.

Traditional multiprocessors must synchronize
conservatively to preserve correctness when static
analysis cannot determine with complete certainty that a
dependency does not exist. For non floating-point
applications, this makes it difficult to find regions that
can be parallelized safely and still achieve good
speedups. With TLS, it is possible to parallelize

© 2003 IEEE. Published in the Proceedings of ISCA-30, 9-11 June 2003 in San Diego, CA, USA. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes
Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.

aggressively rather than conservatively. Since sequential
ordering is guaranteed for parallel execution of any
program decomposition under TLS, the problem of
compilation is reduced to finding regions of program
execution with significant parallelism.

• Hardware profiler – Static parallelizing compilers
often have insufficient information to analyze dynamic
dependencies effectively. Dynamic analysis to find
parallelism complements a TLS processor’s ability to
parallelize optimistically and use hardware to guarantee
correctness. Tracer for Extracting Speculative Threads
(TEST) [9] is hardware support in Jrpm that analyzes
sequential program execution in real-time to find the best
regions to parallelize. This system provides accurate
estimates of dynamic dependency behavior, thread size,
and buffering requirements that are needed for selecting
good decompositions and that would be difficult to
derive statically. Estimates show the tracer requires
minimal hardware additions to our CMP and causes only
minor slowdowns to programs during analysis.

• Virtual machine – The Java virtual machine
(JVM) [28] acts as an abstraction layer to hide dynamic
analysis and thread-level speculation from the program.
Virtual machines like the JVM and Microsoft’s .NET
VM have become commercially popular recently for
supporting platform independent applications. Binaries
are distributed as portable, platform independent
bytecodes [28] that are dynamically compiled into native
instructions of the underlying architecture and run within
the protected environment of the VM. This virtualization
allows us to seamlessly support a new execution model
without modifying the source binaries.

Hydra CMP

Java VM

Application

TEST profiler TLS support

Native code
+

Annotation
instructions

Native TLS
codeJIT Compiler

Profile analyzer

Java bytecode

CFG / DFG

1

2

3

4

5

1 Identify possible thread decompositions by analyzing
bytecodes and compile natively with annotation
instructions.

2 Run annotated program sequentially, collecting TEST
profile statistics on potential thread decompositions.

3 Post-process profile statististics and choose thread
decompositions that provide the best speedups.

4 Recompile code with TLS instructions for selected
thread decompositions.

5 Run native TLS code.
Figure 1 – Block diagram of Jrpm.

These basic components are used to create a system
that can automatically compile programs to exploit
thread-level parallelism. A block diagram of Jrpm
outlining how the various software and hardware
components work together is shown in Figure 1. The
compiler derives a control-flow graph from program
bytecodes and analyzes it to identify potential thread
decompositions. A program that has been dynamically

compiled with instructions annotating local variables and
thread decompositions is executed as a sequential
program on a single Hydra processor. The trace
hardware collects statistics in real-time for the
prospective decompositions. Once sufficient data has
been collected by the trace hardware, regions predicted
to have the largest speedup and most coverage are
dynamically recompiled into speculative threads.

This dynamic parallelization system has other
potential benefits:

• Reduced programmer effort – Explicit coding of
parallelism is better suited for coarser grained and
distinct tasks. Manually identifying fine-grained parallel
decompositions can be a time-consuming effort for
programs without obvious critical sections.

• Portability – The code maintains platform
independence because the binaries are not modified
explicitly for thread speculation.

• Retargetability – Decompositions can be tailored
dynamically for specific hardware or data. Different
decompositions may be chosen for future CMPs with
more CPUs, larger speculative buffers, and different
cache configurations. In some applications,
decompositions can also be optimized for specific data
set sizes.

• Simplified analysis – Compared to traditional
parallelizing compilers, the Jrpm system relies on more
hardware for TLS and profiling support, but reduces the
complexity of the analysis required to extract exposed
thread-level parallelism.

Simulations demonstrate Jrpm’s ability to exploit
thread-level parallelism automatically with minimal
effort from the programmer. On our CMP with four
CPUs, we achieve speedups of 3 to 4 on floating point
applications, 2 to 3 on multimedia applications, and
between 1.5 and 2.5 on integer applications. Selection of
appropriate thread decompositions by the hardware
profiler, low-level optimizations on code dynamically
compiled into speculative threads, and some manual
programmer transforms for exposing parallelism when it
cannot be found automatically are all key to getting good
performance.

The remainder of this paper details the major
components of Jrpm and provides results from
simulation. Section 2 introduces the Hydra CMP with
speculation support. Section 3 describes the hardware
profiling system used to select good speculative
decompositions. Section 4 shows compiler optimizations
performed on selected speculative thread loops. Section
5 explains performance and correctness issues for
running thread speculation within a JVM. Section 6
presents the results of running real programs on Jrpm.
Section 7 compares related work and Section 8
summarizes our findings.

2. CMP with TLS Support
Hydra [32], shown in Figure 2, is a chip

multiprocessor consisting of 4 single-issue, pipelined
MIPS processors, each with private L1 data and
instruction caches. High-speed read and write buses
enable low-latency inter-processor communication that

makes it possible to take advantage of thread-level
parallelism even when there is substantial inter-processor
sharing. An integrated on-chip shared L2 cache
minimizes cache misses to lower memory when the
processors work on shared data.

Table 1 – Thread-level speculation overheads.

Overhead
(cycles)

TLS Operation

O
ld

N
ew

Work performed

STL_STARTUP
(Master CPU
only)

41 23 Clear store buffers
Set speculative event handlers
Store $fp & $gp
Wake up slave CPUs
Enable TLS

STL_SHUTDOWN
(Master CPU
only)

46 16 Wait to become head CPU
Disable TLS
Kill slave CPUs

STL_EOI
End-of-iteration

14 5 Wait to become head CPU
Commit store buffer
Clear cache speculation tag bits
Start new thread

STL_RESTART
Violation and
restart

13 6 Clear store buffers
Clear cache speculation tag bits
Restore $fp & $gp

Thread-level speculation (TLS) allows a sequential
program to be divided into threads to be executed in
parallel. Data speculation hardware ensures memory
ordering of the original sequential program is maintained
by the threads. Read-after-write (RAW) dependencies
are guaranteed by forwarding data to sequentially later
threads, and forcing restarts of threads when a
speculative thread reads a value too early and sequential
memory ordering is violated. By buffering and
committing speculative writes in threads according to the
original program order, write-after-write (WAW)
ordering is maintained. Finally, buffered writes are only
available to sequentially later threads, preventing write-
after-read (WAR) violations.

Speculative thread support in Hydra consists of
coprocessors for each CPU that control thread
speculation, extra speculative tag bits added to the
processor L1 data caches to detect inter-thread data
dependency violations, and a set of secondary cache
store buffers to hold speculative data until it can either be

safely committed to the secondary
cache or discarded [21]. The physical
limits of buffered speculative state in
Hydra are given in Figure 2.

TLS is controlled in an
application through special
instructions that access the
coprocessor and through special stores
issued onto the write bus. For a loop
transformed into speculative threads,
there are overheads for starting and
shutting down speculation, at the end
of every iteration, and on dynamic
RAW violations, as shown in Table 1.
This table shows improvements in the
software handlers (New) compared to
overheads reported previously for our
runtime system (Old). The significant
reduction in overheads results from
improved coding of the speculative

control routines and more efficient speculation control
instructions.

3. Selecting Thread Decompositions
A speculative thread loop (STL) is a loop

decomposed into threads, where each loop iteration is
one thread. Because hardware guarantees correct
parallel execution of speculative threads, compiling for
this execution model involves finding regions in
programs where thread-level parallelism can be exploited
within our hardware constraints:
• Inter-thread data dependencies, or RAW hazards,

limit parallel execution of speculative threads.
• Speculative read and write state buffered by the

hardware can overflow and force speculative
execution to stall until reads or writes can be
performed safely (e.g. when the thread becomes the
non-speculative “head” thread).

• Code compiled as speculative threads introduces
overheads from speculation handlers and
communication of inter-thread (loop-carried)
dependent local variables.

• Only one STL (e.g. one loop level in a loop nest)
may be active at a given time.
These constraints impose conflicting objectives

when selecting STLs. Speculating on small loops limits
coverage, precludes speculation on outer loops, and
suffers from proportionally higher speculative thread
overheads. Speculating on large loops can increase
speculation buffer overflows and incur high penalties for
late RAW violations.

As discussed earlier, detecting parallelism with
static compilers in large, general programs is challenging
[3]. Jrpm relies on dynamic analysis to find parallelism,
which complements a TLS processor’s ability to
parallelize optimistically and use hardware to guarantee
correctness. The Tracer for Extracting Speculative
Threads (TEST) [9] profiles sequential program
execution and collects dependency timing, thread length,
and speculative buffer usage estimates to find the best
loops to transform into STLs. TEST support requires

SDRAM
interface

DRAM Main
Memory

I/O bus
interface

I/O DevicesOn-chip L2 cache (2MB)

Store buffers

Comparator banks #0 #1 #2 #3 #4

Write-through bus (64b)

Read/replace bus (256b)

L1 ICache
(16kB)

Memory controller

CPU0 CP2

L1 DCache +
Spec tags (16kB)

L1 ICache
(16kB)

Memory controller

CPU1 CP2

L1 DCache +
Spec tags (16kB)

L1 ICache
(16kB)

Memory controller

CPU2 CP2

L1 DCache +
Spec tags (16kB)

L1 ICache
(16kB)

Memory controller

CPU3 CP2

L1 DCache +
Spec tags (16kB)

Central bus arbitrator

TEST

Fully2kB (64 lines x 32B)Store buffer
4-way16kB (512 lines x 32B)Load buffer
AssociativityPer-thread limitBuffers

10Interprocessor
50Main memory

5L2
Latency (cycles)Access

Figure 2 – Block diagram of our CMP. TLS support blocks shown in dotted lines.

TEST profile hardware blocks shown in dark blocks.

little hardware support and incurs only minimal
slowdown to programs during analysis. Section 3.1 is an
overview of the analysis used to select STLs and Section
3.2 briefly shows how the analysis is implemented in
hardware and software.

3.1 Selecting Good Decompositions
TEST analysis is applied to any loop which does not

have any obvious serializing dependency. TEST
analysis relies on comparing event timestamps from
different events during sequential execution to derive
statistics for a potential STL.

Two primary analysis are performed by TEST to
characterize the effects of real constrains on a potential
STL. The load dependency analysis looks for inter-
thread dependencies that limit parallelism. Timestamps
recorded on previous memory or local variable stores are
retrieved during a load to the same address and compared
to thread start timestamps to determine if an inter-thread
dependency arc exists. The dependency with the
smallest arc distance arc is also recorded as the critical
arc that limits parallelism between the threads.

The speculative state overflow analysis ensures that
speculative state for a STL can fit within the L1 caches
and store buffers, preventing potential TLS stalls due to
speculative state overflows. In this analysis, a cache line
timestamp and cache line tag is recorded for the cache
line a heap load or store would have hit. Subsequent
memory accesses check for a previously recorded cache
line timestamp with a matching cache line tag. If no
timestamp exists or if it is less than the current thread
start timestamp of a STL, a counter, either the load
counter for speculatively read cache lines or store
counter for store buffer entries, is incremented to reflect
new buffer state required by the current thread. The
overflow counter is incremented if either counter for the
current thread exceeds hardware buffer limits.

The results of the load dependency analysis and the
buffer overflow analysis are accumulated over time and
used to predict the performance of a potential STL. Two
heuristics signal that sufficient data has been collected
for a potential STL: at least 1000 iterations have been
executed or outer potential STLs are predicted to
consistently overflow speculative state.

Once enough profiling data has been collected, the
estimated speedup for a STL is computed using average
dependency arc frequencies, thread sizes, critical arc
lengths, overflow frequencies and speculative overheads.
Only loops that have average iterations per entry >> 1,
speculative buffer overflow frequency << 1, and
predicted speedups > 1.2 are recompiled into speculative
threads. In a loop nest, where we are limited to
speculating at one loop level at a time, we select the best
STL from those possible by comparing the estimated
execution times of speculating at different levels in the
loop nest.

3.2 Hardware Profiling Support
Without hardware support, our simulations indicate

execution slows over 100x when applying this analysis

with software alone. This magnitude of slowdown is
unacceptable in a real dynamic compilation system, and
the sizeable software overheads introduce significant
imprecision into the collected statistics.
Table 2. Annotating instructions and associated operations.

Instruction
Normal
operation Annotation (when enabled)

lw|lb|lbu|lh
lhu|lwc1 addr

Load Load

sw|sb|sh|
swc1 addr

Store Store

lwl vn none Local variable load
swl vn “ Local variable store
sloop n “ Start loop
eoi “ Loop end of iteration
eloop n “ End loop

li $s1, 10
sloop 1

LOOP_TOP:
lwl 1
blez $s1, LOOP_EXIT
jal call
bnez $v0, IF_FAIL
lwl 1
addi $s1, $s1, -1
swl 1
b LOOP_EOI

IF_FAIL:
lw $t0, 8($s0)
addi $t0, $t0, 1
sw $t0, 8($s0)

LOOP_EOI:
eoi
b LOOP_TOP

LOOP_EXIT:
eloop 1
jal READ_STATISTICS

1 Mark start of speculative region
and allocate 1 local variable
timestamp slot for lcl_v.

4

Instrumented machine code

int lcl_v = 10;
while(lcl_v > 0){

if(call() != 0){
lcl_v--;

}
else{

this.val++;
}

}

Original loop

1

4 Mark end of speculative region
and free local variable
timestamp. Read collected
statistics from profiler.

2

2 Local variable annotations mark
accesses to lcl_v.

3 lw and sw automatically
communicated to profiler.

3

Figure 3 – Example of an annotated loop.

TEST hardware works when speculation is disabled
and requires only minor hardware additions to our CMP
design. The additions are new annotation instructions to
be inserted by the dynamic compiler and hardware
comparator banks that perform the trace analysis. The
speculative store buffers, which are idle during non-
speculative execution, hold timestamps for the profiler.
Estimates indicate the hardware support adds less than
1% to the total transistor count of Hydra.

Annotating instructions, listed in Table 2, are
automatically inserted by the JIT compiler. The
compiler derives a control-flow graph (CFG) from Java
bytecodes. All natural loops [31] identified from the
CFG are marked as prospective STLs and denoted with
special annotations, as illustrated in Figure 3. After
compiler optimizations to eliminate unnecessary
annotations, benchmarks experience an average 7.8%
slowdown during profiling, and only 2 applications have
slowdowns approaching 25%, as shown later in Figure 8.
Higher profiling overheads are seen in some programs
due to the cost of annotations on potential STLs with
small loop bodies.

Store buffers that normally hold writes during
speculative execution hold timestamps during TEST
profiling. The store buffers are statically partitioned so
that three buffers hold heap access store timestamps, one
holds cache line timestamps, and one holds store

timestamps to local variables. An address’ timestamp is
returned when requested by a memory access or local
variable annotation.

The comparator banks carry out the bulk of the real-
time dependency and overflow analyses. Memory load
and store instructions and the special annotating
instructions are automatically communicated through the
memory system to the banks during profiling. One
comparator bank tracks the statistics for one potential
STL by analyzing timestamps from the executing
memory and local variable loads and stores. An array of
eight comparator banks allows us to analyze multiple
potential STLs executing simultaneously in loop nests.
Comparators compare thread start timestamps against
incoming cache line timestamps to check for speculative
state overflow and against incoming store timestamps to
identify critical arcs. At the end of each thread of a
potential STL, critical arc lengths, critical arc counts, and
buffer overflows are accumulated into counters. The
accumulated statistics are read from TEST upon exit
from a potential STL.

4. Compiling Thread Decompositions

4.1 microJIT Dynamic Compiler
Our Java runtime system is based on the open-

source Kaffe VM (http://www.kaffe.org/), but we used our
own JIT compiler and garbage collector to address
performance limitations of the original VM. We
developed microJIT [8], a fast, dataflow compiler that
can generate code 30% faster than the Sun-client
dynamic compiler [17], which performs only limited
optimizations, and over 10x faster than Sun-server
compiler [12], an optimizing static single assignment
(SSA) dynamic compiler [31]. Code generation speed
was achieved without sacrificing code quality by
interleaving compilation stages and minimizing compiler

passes. Code optimizations performed by our compiler
include common sub-expression elimination, copy
propagation, constant propagation, loop invariant code
motion, inlining and global register allocation. The
resulting code generated by microJIT is competitive with
commercial JIT compilers. Our experiments that show
the generated code is 20% faster than Sun-client
generated code and is within 25% of the performance of
Sun-server generated code [8].

For the Jrpm system, the microJIT compiler was
augmented to generate speculative thread code.
Speculative thread control routines from Table 1 are
inserted into STLs chosen by TEST analysis, as
illustrated in Figure 4. In addition to the fixed overheads
of the speculative handlers, additional overheads may be
introduced in specific circumstances. STL initialization
values must be saved to the runtime stack by the master
processor and then loaded by the slave processor.
Cleanup code must be inserted at STL_STARTUP and
STL_SHUTDOWN by some of the optimizations below.
Local variables that may cause inter-thread (loop carried)
dependencies in a STL must be communicated through
forced loads and stores in the runtime stack.

4.2 Optimizations for Improving Speculative
Performance

Optimizations that improve speculative
performance, like register allocating loop invariants,
using non-violating loop inductors, inserting
synchronization locks, and identifying reduction
operations, are applied automatically to selected STLs
when possible. These compiler optimizations are
described below.
4.2.1 Loop invariant register allocation. Traditionally,
register allocating loop invariants eliminates the need to
reload a read-only value every time it is used in a

sequential loop. Register allocating loop invariants
in STLs provides similar benefits, but is a little
trickier to implement. On a RAW violation, the
register state of a speculative thread is unknown
because it was interrupted in mid-execution.
Registers must be restored to their original thread
start value before the thread can be restarted. One
possible way of accomplishing this is by
maintaining a shadow register file that holds the
thread start register state so that it can be quickly
restored on restart. Unfortunately, this approach
requires a significant amount of extra hardware to
mirror all the architectural registers and complex
logic to restore register state in a minimal number
of cycles. We accomplish similar functionality with
software only. Register allocated loop invariants
are saved to the runtime stack during TLS startup.
On a RAW violation, only relevant registers are
restored by a custom STL_RESTART handler, as
illustrated in Figure 5.
4.2.2 Non-communicating loop inductors. Loop
induction variables are always incremented the
same amount in every loop iteration. Loop

STL_STARTUP:
scop_cmd enable_spec
mtc2 $fp, saved_fp
b STL_INIT

STL_RESTART:
scop_cmd reset_cache
smem_cmd kill_buffer
mfc2 $fp, saved_fp

STL_INIT:
<< init code, if any >>

STL_TOP:
bge << cond >>, STL_SHUTDOWN
<< loop body >>

STL_EOI:
scop_cmd advance_cache
smem_cmd commit_buffer_and_head
b STL_TOP

STL_SHUTDOWN:
scop_cmd disable_spec
smem_cmd commit_buffer

1

4

1 Master CPU enters STL, enables TLS, and wakes up slave CPUs.

2 CPU waits to become the head, or non-speculative CPU, at which point it commits it
store buffer and then jumps to STL_TOP to start a new thread.

3 On loop exit condition, a speculative CPU jumps here, where it waits to become the
head processor before disabling speculation, killing slave CPUs, and returning control
to the sequentially executing master CPU.

4 On a RAW violation, a speculative CPU jumps to STL_RESTART where it kills CPUs
that are more speculative than itself, discards its store buffers, and then restarts
execution of the current thread at STL_TOP.

(slave startup/shutdown code omitted)

CPU0
(Master)

CPU1
(Slave)

CPU2
(Slave)

CPU3
(Slave)

3

2

Figure 4 – Illustration of STL code executed by the processors.

inductors can be a performance problem for thread
speculation on loops because they result in a inter-thread
(loop carried) dependency. Communication of inductors
introduces serialization between loop iterations and can
cause RAW violations. Previous proposals [11][41][45]
have used value prediction or scheduling to eliminate
these negative effects.

We use software and a simple hardware iteration
counter to completely eliminate communication of loop
inductors. To keep software and hardware requirements
low, our runtime system distributes loop iterations of a
STL to processors in a simple round robin order [33].
For four CPUs, this implies that CPU0 always handles
iterations 0, 4, 8, …, CPU1 always handles iterations 1,
5, 9, …, and so forth. This configuration allows us to
easily compute the next value of the loop inductor locally
for the next speculative thread that a processor handles,
as shown in Figure 5. Like loop invariant register
allocation, the value of register allocated inductors must
be properly recovered after a thread restart. To achieve
this, the STL_RESTART handler can compute the correct
current value of the inductor using a simple counter
tracking the current speculative thread iteration being
executed by a CPU.

4.2.3 Reset-able non-communicating loop inductors.
Non-communicating loop inductors can also be extended
to handle variables that look like loop inductors, but
occasionally have an unpredictable value at an unknown
loop iteration. The code to handle this is similar to the
code to handle normal loop inductors, except that when
the rare condition is encountered, the correct current
value is written and a violation and restart is forced to
later speculative threads. Within the STL_RESTART
handler, the restarted speculative threads can then load
the correct, updated value.
4.2.4 Thread synchronizing lock. Previous studies
have shown that minimizing violation frequency can
improve TLS performance [11][41]. For a frequent loop
carried dependency, it is often better to wait for the
correct value than to get an incorrect one, violate, and
then have to restart. We can protect such a variable
using a synchronization lock that stalls speculative

threads until the variable has been properly updated, as
shown in Figure 6. This lock uses a special instruction,
lwnv (load word, non-violating), that acts like a normal
lw to return the most recently written value, even if it is
speculative, but can never cause a violation and restart.
Jrpm automatically inserts a synchronizing lock into
compiled code when the TEST profile result for a STL
shows a frequently occurring inter-thread dependency
(e.g. > 80%) that has an average dependency arc length
much less than the average thread size.

STL_STARTUP:
sw $r0, 0($fp)
...

STL_RESTART:
...

STL_TOP:
bge $s1, $s2, STL_SHUTDOWN
mfc2 $t0, iteration

STL_WAIT:
lwnv $t1, 0($fp)
bne $t0, $t1, STL_WAIT
<< loop carried dep >>

STL_SIGNAL:
addiu $t0, $t0, 1
sw $t0, 0($fp)

STL_EOI:
...
b STL_TOP

STL_SHUTDOWN:
...

3

+ Synchronizing lock

lock = 0;
for(i = 0;

i < limit;
i++){
STL_WAIT(lock);
<< loop carried dep >>
STL_SIGNAL(lock);

}

Original loop 2

2 Spin on lock value using lwnv
(load-word, non-violating) until the
value is equal to current iteration
number.

3 After executing the protected
region, write the next iteration
number to the lock.

1 Clear lock variable.

1

(slave startup/shutdown code omitted)

Figure 6 – Illustration of a thread synchronizing lock.

4.2.5 Reduction operator optimization. Reduction
operations [3], like computing sums or finding min/max
values, are loop carried dependencies that can be easily
transformed so they do not result in inter-thread
dependencies. Reductions can be computed locally for
the speculative threads that a given processor is handling.
The locally computed value from each processor can be
merged at the end of a STL to get the correct final value.

STL_STARTUP:
li $t0, 1
sw $t0, 0($fp)
sw limit, 4($fp)
...

STL_RESTART:
...

STL_INIT:
lw $s2, 4($fp)

STL_TOP:
lw $s1, 0($fp)
bge $s1, $s2, STL_SHUTDOWN
<< loop body >>

STL_EOI:
addiu $s1, $s1, 2
sw $s1, 0($fp)
...
b STL_TOP

STL_SHUTDOWN:
...

STL_STARTUP:
li $t0, 1
sw $t0, 0($fp)
sw limit, 4($fp)
...

STL_RESTART:
...

STL_INIT:
mfc2 $s1, iteration
sll $s1, $s1, 1
lw $t0, 0($fp)
addu $s1, $s1, $t0
lw $s2, 4($fp)

STL_TOP:
bge $s1, $s2, STL_SHUTDOWN
<< loop body >>

STL_EOI:
addiu $s1, $s1, 8
...
b STL_TOP

STL_SHUTDOWN:
...

STL_STARTUP:
li $t0, 1
sw $t0, 0($fp)
sw limit, 4($fp)
...

STL_RESTART:
...

STL_INIT:
STL_TOP:
lw $s2, 4($fp)
lw $s1, 0($fp)
bge $s1, $s2, STL_SHUTDOWN
<< loop body >>

STL_EOI:
addiu $s1, $s1, 2
sw $s1, 0($fp)
...
b STL_TOP

STL_SHUTDOWN:
...

+ Non-communicating loop inductors

for(i = 1;
i < limit;
i += 2){
<< loop body >>

}

Original loop

Base STL assembly + Loop invariant register allocation

1

2

4

3
1 Master CPU stores initial value

of i = 1 on stack.

2 Load loop invariant in STL_INIT.
The loop invariant is reloaded on
a RAW violation since register
state is unknown after a violation.

3 Load inductor value in STL_INIT
using special iteration register (set
to zero on STL startup,
incremented on every thread
commit).

4 Compute inductor value for next
thread locally (2*(4 CPUs) = 8).

(slave startup/shutdown code omitted)

Figure 5 – Illustration of two optimizations. Arrows show how code is moved by the optimizations.

STL_STARTUP

for(){ // outer loop

<< outer loop body >>

if(rare condition){

STL_SWITCH_STARTUP

for(){ // inner loop

<< inner loop body >>

STL_EOI

}

STL_SWITCH_SHUTDOWN

}

STL_EOI

}

STL_SHUTDOWN
Figure 7 – STL assembly for multilevel STL decompositions.

4.2.6 Multilevel STL decompositions. Multilevel STL
decompositions are useful in irregularly structured nested
loops, like the one shown in Figure 7. The two loops
here both contain significant parallelism, but the inner
loop, contained within a conditional block, is executed
infrequently. We would normally choose to speculate on
the outer loop, but speculating on the outer loop while
executing the infrequent inner loop could lead to load
imbalance between iterations that degrade speculative
performance.

Our compiler can insert low-overhead handlers so
that the selected STL can be switched to the inner loop
and then restored to the outer loop upon completion of
the inner loop. Multilevel STL decompositions can be
applied automatically when TEST profiling shows that
the inner loop is executed infrequently (e.g. the loop
iteration count of the outer loop is much larger than the
loop entry count of the inner loop).
4.2.7 Hoisted startup and shutdown routines. If the
number of iterations per entry into a STL is low, then the
overhead of the STL_STARTUP and STL_SHUDOWN
handlers can be proportionally high. More than half of
this handler code wakes up the other CPUs (which are
idle or interrupted from another process) and initializes
the speculation hardware. This code does not need to be
re-executed in regions of code that may have several
STLs or when a STL is entered multiple times, like a
selected STL within a loop nest. In these cases, startup
and shutdown overheads can be reduced by hoisting
some of the STL startup and shutdown handler code to
the entry and exit of a given method, or to the outer-most
loop.

5. Virtual Machine Considerations

5.1 Exception Handling
One of the nice properties of thread-level

speculation is that it preserves the sequential execution
behavior even for unexpected events like exceptions.
Threads may generate false exceptions during TLS
because computations are based on speculative memory
references (e.g. a thread with a null pointer exception
may be restarted to execute with different memory
values). Consequently, a speculative thread with an
exception must wait until it becomes the non-speculative
“head” thread [21]. Only when this happens is the

exception real and must be handled. In Java, hardware
and software exceptions are “thrown” up the call stack
until it is caught by a catch handler [16]. Nothing
special needs to happen if an exception thrown during
speculation is caught within an executing STL by a
catch handler. If an exception thrown during
speculation is not caught within a STL, exception
handling code must properly terminate speculative
execution before jumping to an exception handler
external to the STL.

5.2 Garbage Collection
Originally, memory allocation during speculation

interfered with performance in several benchmarks. Our
JVM uses a fast concurrent mark-and-sweep garbage
collector [23]. Unallocated objects are stored in a linked
free list. Allocating objects on every speculative thread
of a STL caused a serializing dependency on this linked
list. To deal with this, we parallelized access to the
allocator during speculation. This was achieved by
maintaining several free lists that can be accessed
privately by each processor during speculative execution.
Similar techniques could be applied to prevent serializing
dependencies in JVMs that use copying garbage
collectors [23].

5.3 Synchronized Objects
In Java, method invocations can be explicitly

synchronized to an object (using the synchronized
keyword [16]) to prevent concurrent accesses from
multiple explicit Java threads. A simple object lock will
cause an inter-thread dependency if it is locked and
unlocked on every iteration during speculation. Such a
lock is unnecessary during speculative execution because
the correct sequential ordering of accesses by
concurrently executing speculative threads is guaranteed.
Unfortunately, object locks cannot be omitted from
compiled code because they may be compiled into
methods called from a STL during speculation, but the
method may also be called during normal non-
speculative execution. We re-implemented the lock
routine to prevent object synchronization from causing
serialization during speculation, while maintaining the
correct behavior during normal execution.

6. Performance Results
Table 3 lists benchmarks we ran on Jrpm, including

applications from the jBYTEmark (http://www.byte.com/),
SPECjvm98 (http://www.specbench.org/), Java Grande
(http://www.epcc.ed.ac.uk/javagrande/javag.html) benchmarks
suites, as well as real applications found on the internet.

6.1 Selected Speculative Thread Loops
Table 3 summarize the characteristics of the STLs

chosen from analysis. Overall, we found significant
diversity in the coverage of selected STLs. While many
programs have critical sections, Assignment, NeuralNet,
euler and mp3 have many STLs that contribute equally to
total execution time. Several programs have more

selected STLs (column e) than are shown in the table, but
the omitted decompositions do not have any significant
coverage (< 0.5% of total execution time). mp3, db, jess,
and DeltaBlue have significant sections of serial
execution (column i) not covered by any potential STLs
that limits the total speedup for these applications.

TLS can simplify program parallelization, but not all
programs can benefit from it. Some integer benchmarks
evaluated using TEST showed no potential for speedup
using speculation. Programs with system calls in critical
code, like I/O intensive programs, currently cannot
benefit from TLS because system calls cannot be
handled speculatively in our system. Several programs
had loops with characteristics that suggested little or no
thread-level parallelism. Pizza, a Java source to
bytecode compiler, and jack, a parser generator,
contained loops that were both too large and executed
too few iterations for speculation. Richards, a task
scheduler, contained a serializing dependency within its
critical STL that could not be optimized. Of two
different raytracer programs we looked at, one had a
parallel loop that was predicted to consistently overflow
the speculative buffers, while the other had a parallel
loop that fit within the speculative buffers. This last
example suggests that the way a program is written can
strongly affect how well it can be automatically
parallelized using TLS.

The larger programs contain significant numbers of
loops (column c) that would have made manual
identification of STLs a time consuming task. A visual
analysis of the source code identified that less than half
of the benchmarks can be analyzed by a traditional
parallelizing compiler (column a) (e.g. they resemble
floating point code w/ regular array accesses, no dynamic
pointers, bounded loops, and little control flow). The

average height of selected STLs (column f) have
granularities larger than the inner-most loop in a loop
nest. The maximum loop nesting depth column (column
d) indicates that eight comparator banks are sufficient to
analyze most of the nested loop structures in the
benchmark programs. When deeply nested loops with a
depth greater than eight must be analyzed, banks are
initially allocated to the outer-most loops, but are freed
to be used by inner loops when the outer loops
eventually predict speculative buffer overflow.

Our experiments suggest that our dynamic
parallelization system can make STL selections that
account for input data set sizes. We noticed several
applications where the best decompositions can change
according to input data sizes (column b). In these
benchmarks, multiple levels of parallelism exist in key
loops. Assignment, NeuralNet, LUFactor, euler, and
shallow use a nested loop to traverse a 2-dimensional
data array. For these programs, loops lower in a loop
nest must be chosen with larger data sets because the
number of inner loop iterations will rise, increasing the
probability of overflowing speculative state when
speculating higher in a loop nest.

6.2 Speculative Thread Performance
Each benchmark was run as a sequential annotated

program on Jrpm with the TEST profiling system
enabled. The benchmark was then recompiled and
executed using speculative threads with the STLs
selected by TEST. Figure 8 displays the slowdown
during profiling, the predicted TLS execution time from
TEST analysis, and actual TLS performance. Figure 9
shows total program speedup (adding compilation,
garbage collection, profiling, and recompilation
overheads) compared to serial execution for a given

Table 3 – Characteristics and performance statistics for benchmarks evaluated with STLs selected by TEST.
 Characteristics TEST TLS Statistics Speedups from TLS Optimizations
 (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r) (s) (t) (u)

C
at

eg
or

y

Benchmark Description D
at

a
se

t

A
na

ly
za

bl
e

D
at

a
se

t s
en

si
tiv

e

L
oo

p
co

un
t

L
oo

p
de

pt
h

Se
le

ct
ed

 lo
op

s

A
vg

. l
oo

p
de

pt
h

T
hr

ea
ds

 /
ST

L
 e

nt
ry

T
hr

ea
d

si
ze

 (c
yc

le
s)

Se
ri

al
 e

xe
ct

io
n

A
vg

. l
oa

d
bu

ff
er

 sz
.

A
vg

. s
to

re
 b

uf
fe

r
sz

.

O
pt

 -
O

ve
rh

ea
ds

O
pt

 -
L

oo
p

in
v.

O
pt

 -
R

ed
uc

tio
n

O
pt

 -
Sy

nc

O
pt

 -
R

es
et

ab
le

 in
d.

O
pt

 -
H

oi
st

in
g

O
pt

 -
M

ul
til

ev
el

JV
M

 -
A

llo
ca

tio
n

JV
M

 –
 J

av
a

lo
ck

M
an

ua
l

Integer
 Assignment Resource allocation 51x51 N Y 32 5 11 2.0 29 199 1% 1.2 0.2 11% 2% 3%
 BitOps Bit array operations N N 4 2 2 1.0 7646 29 0% 1.1 0.8 73% 10% 128%
 compress Compression N N 28 4 4 1.8 93755 546 0% 4.1 3.1 2% 1% 42%
 db Database 5000. N Y 37 5 6 1.7 23142 510 3% 7.8 2.9 2% 2% 5% 29% 31% 44%
 deltaBlue Constraint solver N N 22 4 5 2.6 82 501 22% 6.5 2.9 1% 1%
 EmFloatPnt FP emulation N N 7 3 1 2.0 255 20127 0% 11.0 9.5 16%
 Huffman Compression N N 14 3 6 1.3 502 108 0% 2.0 0.8 18% 2% 65%
 IDEA Encryption Y N 2 2 1 2.0 242 6307 0% 1.9 2.2
 jess Expert system N N 134 11 4 5.3 166 339 27% 6.6 2.8 1% 1%
 jLex Lexical analyzer gen N N 128 6 7 3.0 71 2699 7% 4.1 2.4 1% 11% 8%
 MipsSimulator CPU simulator N N 19 4 2 3.5 51931 1313 0% 11.3 4.4 1% 79% 17%
 monteCarlo Monte carlo sim. N N 15 3 5 1.4 942 119 5% 2.4 0.8 3% 27% 18% 74%
 NumHeapSort Heap sort N N 5 3 2 2.0 6081 555 0% 3.4 3.5 2% 1% 245%
 raytrace Raytracer N N 14 4 1 1.0 65 158 9% 0.0 0.0 6% 1%
Floating point
 euler Fluid dynamics 33x9 Y Y 32 2 13 1.1 66 304 1% 4.8 1.6 5% 88%
 fft Fast fourier trans. 1024. Y Y 5 3 2 2.0 187 231 0% 1.4 3.8 2% 8%
 FourierTest Fourier coefficients Y N 2 2 1 2.0 100 167802 0% 4.3 3.5
 LuFactor LU factorization 101x101 Y Y 13 3 7 1.6 64 455 0% 1.9 0.6 3% 2%
 moldyn Molecular dynamics Y N 8 2 1 1.0 1026 96 2% 2.0 0.0 10%
 NeuralNet Neural net 35x8x8 Y Y 19 4 8 1.9 9 617 1% 1.7 2.5 6% 3% 2%
 shallow Shallow water sim. 256x256 Y Y 11 3 3 1.0 257 1420 0% 7.8 6.2 1%
Multimedia
 decJpeg Image decoder N N 61 5 21 2.2 34 124 13% 2.5 1.0
 encJpeg Image compression N N 62 8 9 1.6 54 121 1% 2.8 1.6 10% 4%
 h263dec Video decoder N N 54 5 3 3.0 165 212 10% 4.0 2.2 3%
 mpegVideo Video decoder N N 69 8 9 1.4 23 701 47% 4.1 3.7
 mp3 mp3 decoder N N 98 6 17 2.3 55 181 14% 3.1 1.4 6% 2% 8%

benchmark run.
The results show relatively good speculative

performance for selected STLs. Overall, TLS execution
characteristics like average thread size, number of
threads per loop entry, and speculative buffers required
(columns g, h, j & k) vary widely from program to
program. The average thread size for most benchmarks
is at least a hundred or more cycles. Given that our
experiments were conducted using single-issue MIPS
cores, the average size of threads is sufficiently large to
suggest that programs may further benefit from
superscalar cores that can exploit instruction-level
parallelism relatively independent of the coarser-grained
parallelism being targeted by TLS.

We found the overheads for profiling and dynamic
recompilation small, even for the shorter running
benchmarks. This is possible due to the low-overhead
profiling system and relatively small amount of collected
profiling information required to make reliable STL
choices. In our benchmarks, selected STLs varied little
with the amount of profiling information collected once
enough data was collected to overcome local variations
in RAW violations, buffer overflows and thread sizes.
This is due to the fact that most selected STLs were
invariant to the input data set and the input data sets were
stable for the duration of the benchmark. For
benchmarks with STLs sensitive to input data set sizes,
changing in mid-execution to a larger input data set
could cause frequent speculative buffer overflows. For
these benchmarks, a potential solution would be trigger
reprofiling and recompilation when a selected STL
consistently experiences unexpected buffer overflows.

Table 3 shows the effect of optimizations and
improvements that impact all STLs. Reduced overheads
improve speculative performance more than 5% on 10
applications. Loop invariant register allocation only
improves performance 2-4% for five applications. The
effect of the non-communicating loop inductor is not
shown because without this critical optimization,
performance suffers far too much to make a meaningful
comparison. While similar benefits of optimizing
inductor variables in speculative loops were shown by
[11][41][45], our approach has advantages. Our scheme
suffers no overhead for communicating inductors

because they are computed locally, and is simpler
because it does not require significant hardware support
or instruction scheduling.

 Table 3 shows the effect of specialized compiler
optimizations and VM modifications on the benchmarks.
VM modifications appear to have a more significant
impact. Parallelizing memory allocator access and
removing synchronized object locks during speculation
significantly affects performance on six benchmarks.

In general, the opportunities to apply compiler
optimizations are limited to specific STLs in integer
programs, but the sum impact is significant. The
resetable non-communicating loop inductor dramatically
improves BitOps due to the removal of a loop-carried
dependency from the relatively small threads in its
critical STL. Multilevel STL decompositions improve
mp3 and, to a much lesser degree, Assignment. Thread
synchronizing lock prevents performance-degrading
violations on monteCarlo and db. The opportunity to
apply this optimization is less than we hoped for, but the
limited impact seems consistent with other studies that
have looked at techniques for minimizing violations
[11][41]. The only compiler optimization that seems to
have little effect is hoisting startup and shutdown
handlers. This optimization would likely be most useful
in a nested loop with small number of iterations per entry
into the loop. The two loops in NeuralNet that use this
optimization do not have the ideal characteristics, and
only benefit slightly from it.

Also included in Table 3 is the effect of manual
transformations to improve speculative performance.
For six of the integer benchmarks, some programmer
assistance is needed to expose parallelism. The
transformations were achieved with the assistance of
TEST feedback. TEST profiling results that summarized
critical potential STLs and associated dependency arc
frequencies and lengths facilitated quick identification of
performance bottlenecks in the source code. The
resulting transformations, listed in Table 4, significantly
improve performance and do not slowdown the original
sequential execution. Only three of these benchmarks
require significant manual transforms, while the other
three need only trivial modifications. Examination of the
program sources suggest most of these modifications can

0.00

0.25

0.50

0.75

1.00

1.25

As
sig

nm
en

t

Bit
Op

s

co
mp

re
ss db

de
lta

blu
e

Em
Flo

at
Pn

t

Hu
ffm

an

ID
EA jes

s

jle
x

Mi
ps

Sim
ula

to
r

mo
nt

eC
ar

lo

Nu
mH

ea
pS

or
t

ra
yt

ra
ce

eu
ler fft

Fo
ur

ier
Te

st

Lu
Fa

cto
r

mo
ldy

n

Ne
ur

alN
et

sh
all

ow

de
cJp

eg

en
cJp

eg

h2
63

de
c

mp
eg

Vid
eo mp

3

Integer Floating point MultimediaBenchmark

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Profiling Predicted Actual

Figure 8 – Shows simulation results of slowdown during profiling, predicted TLS performance, and actual TLS performance on
the Hydra (4 CPUs) normalized to execution time of the original sequential program.

not be performed automatically because they require
high-level understanding of the program.
Table 4 – Difficulty and potential for compiler automation of
manual transformations performed that improve speculative

performance.

Benchmark

D
iff

ic
ul

ty

C
om

pi
le

r
op

tim
iz

ab
le

L
in

es

m
od

ifi
ce

d

Modified operations

NumHeapSort Low N 7 Remove loop carried
dependency at top of sorted
heap

Huffman Med N 22 Merge independent streams
to prevent sub-word
dependencies during
compression. Guess next
offset when uncompressing
data stream.

MipsSimulator Med N 70 Minimize dependencies for
forwarding load delay slot
value

db Low Y 4 Schedule loop carried
dependency

compress Low N 13 Guess next offset when
compressing/uncompressing
data

monteCarlo Med N 39 Schedule loop carried
dependency

Overall, the results show TEST analysis does a
reasonable job of predicting speculative performance and
can effectively choose STLs that result in good speedups,
but differences between predicted and actual speculative
execution were found. To further understand the
discrepancy between predicted and actual TLS
performance from Figure 8, we looked at time spent in
various states during speculative execution, shown in
Figure 10. The primary differences appear to be from
effects that cannot be accounted for when predicting
speculative performance.

In EmFloatPnt, fft, jLex, and MipsSimulator,
significant processor time is spent in wait-used state.
For fft, this comes from buffer overflow stalls for large
STL iterations. While TEST analysis properly accounts
for overflow, its effects are predicted to be smaller
because the accumulated statistics make iterations that

overflow appear to be
smaller. For EmFloatPnt,
jLex, and MipsSimulator,
wait-used state is due to
load imbalance. Since
speculative thread
iterations must commit in
order, load imbalance
forces speculative
processors to wait if
iterations ahead of it have
still not completed.
Predicted speculative
performance does not
account for wait-used state
because of the averaging
effects of accumulating
counters.

Over ten applications,
particularly compress, Huffman, and mpegVideo, have
significant amounts of run-violated and wait-violated
state that significantly degraded performance. Since we
derive predicted speculative performance by computing
parallelism from ideal scheduling of inter-thread
dependencies, our analysis does not account for the cost
of violations. In actual speculative execution, violations
near the end of a speculative thread can cause a thread to
restart and re-execute all its work, thereby losing any
parallelism that may have existed. Examinations of
program sources suggest that thread violations in these
benchmarks are truly dynamic and cannot be mitigated
by thread synchronization or value prediction.

7. Related Work
The Multiscalar paradigm [15] was the first

complete description and evaluation of an architecture
with TLS support. Several other architectures for TLS
using CMPs have been proposed [10][21][29][40][42].
These implementations have mostly targeted coarser
grains of granularity than the Multiscalar architecture. In
a similar vein, software-based dynamic dependence
detection has been proposed for traditional
multiprocessor systems as a way to preserve correctness
for loops executed in parallel that may have complex
dependency patterns [18][36][37][39].

There are numerous commercial and research
compilers based on array dependence analysis for
parallelizing Fortran programs [2][5][20][38]. Several
studies have looked at how these compilers might be
applied to general programs [4][25][35].

There is a growing body of related work on TLS
compilation addressing different architectures and
aspects of the problem. The Multiscalar [43] compiler
focuses on compile-time heuristics to increase intra-
procedural task sizes and intra-task dependency
scheduling to increase task parallelism. These
optimizations are sufficient for the small threads targeted
by Multiscalar, but do not address the memory
disambiguation and decomposition selection difficulties
of compiling for coarser-grained TLS systems.

A study of TLS limits by Oplinger et al. [34] and

0%

25%

50%

75%

100%

As
sig

nm
en

t

Bit
Op

s

co
mp

re
ss db

de
lta

Blu
e

Em
Flo

at
Pn

t

Hu
ffm

an

ID
EA jes

s

jLe
x

Mi
ps

Sim
ula

to
r

mo
nt

eC
ar

lo

Nu
mH

ea
pS

or
t

ra
yt

ra
ce

eu
ler fft

Fo
ur

ier
Te

st

Lu
Fa

cto
r

mo
ldy

n

Ne
ur

alN
et

sh
all

ow

de
cJp

eg

en
cJp

eg

h2
63

de
c

mp
eg

Vid mp
3

Integer Floating point MultimediaBenchmark

N
or

m
al

iz
ed

 E
xe

cu
tio

n

Application GC Compile Profiling Recompile

Figure 9 – Total program speedup with compilation, garbage collection, profiling, and
recompilation overheads.

Steffan and Mowry’s work on the Stampede TLS
processor [40] have, like us, used simulation and
profiling to identify good thread decompositions. These
studies used cycle-accurate CPU simulators that analyze
dependencies of all executing memory references to
deduce performance estimates of potential STLs.
Neither study specifically addressed how their technique
could be used for automatic speculative compilation or
how their analysis could have been performed without
significant simulation and profiling overheads.

There has also been research on improving the
performance of STLs once they are selected. Several
studies [11][33][41] showed that minimizing inter-thread
violations using hardware synchronization and value
prediction can significantly improve speculative
performance. Zhai et al. [45] found that compiler
scheduling to increase distances between inter-thread
dependencies is most beneficial for minimizing
synchronization stall time of induction variables, but
scheduling of other inter-thread dependencies did not
improve performance significantly.

Tremblay et al. previously proposed a JVM system
with speculative thread support [7][42], but there are
significant differences from Jrpm. Their CMP, the
MAJC processor, has only two processors and only
supports TLS with inefficient software routines. They
also do not propose how speculation can be applied
automatically to programs.

There has been other related research that has
considered how feedback can be used to dynamically
parallelize programs. Ko et al. [26] identified optimal
decompositions through brute-force incremental
execution of all possible decompositions in multilevel
parallel programs. Numerous systems have also been
designed to manually tune parallel performance on
traditional multiprocessors [1][19][27][30], but they have
relied on off-line, not real-time, dependence analysis of
memory traces.

8. Conclusions
Our paper

describes the Java
runtime parallelizing
machine (Jrpm), a
complete system that

automatically
parallelizes sequential
programs using thread-
level parallelism. This
system uses a chip
multiprocessor, thread-
level speculation,
hardware profiling,
and dynamic
compilation together
to enable a different
approach to automatic
parallelization for
small-scale chip

multiprocessors. Simulation results demonstrate Jrpm’s
ability to automatically select and optimize appropriate
thread decompositions with minimal effort from the
programmer. On our CMP with four processors, we
achieve speedups of 3 to 4 on floating point applications,
2 to 3 on multimedia applications, and between 1.5 and
2.5 on integer applications.

Future work will involve trying more applications
out on Jrpm and further investigation on how much
profiling is needed before recompilation into speculative
threads. We are also looking into new techniques to
improve performance on applications with significant
dynamic violation frequencies that cannot be minimized
by thread synchronization or value prediction.

9. Acknowledgements
This work was supported by DARPA Air Force

Contract F29601-01-2-0085 and NSF Grant CCR-
0220138.

10. References
[1] Adve, V. S. et al. An integrated compilation and performance

analysis environment for data parallel programs. In SC‘95, San
Diego, CA, November 1995.

[2] Adve, V. S. et al. High Performance Fortran Compilation
Techniques for Parallelizing Scientific Codes. In SC’98,
Orlando, FL, November 1998.

[3] Allen, R and Kennedy, K. Optimizing Compilers for Modern
Architectures: A Dependence-based Approach. Morgan
Kaufmann Publishers, San Francisco, CA, 2001.

[4] Artigas, P. et al. Automatic Loop Transformations and
Parallelization for Java. In ICS’2000, Santa Fe, NM, May 2000.

[5] Blume, W. et al. Polaris: Improving the Effectiveness of
Parallelizing Compilers. In 7th International Workshop on
Languages and Compilers for Parallel Computing. Ithaca, NY,
August 1994.

[6] Broadcom Corporation. The Sibyte SB-1250 Processor.
http://www.sibyte.com/mercurian.

[7] Chaudhry, S. et al. Space-Time Dimensional Computing for Java

0.00

0.25

0.50

0.75

As
sig

nm
en

t

Bit
Op

s

co
mp

re
ss db

de
lta

blu
e

Em
Flo

at
Pn

t

Hu
ffm

an

ID
EA jes

s

jle
x

Mi
ps

Sim
ula

to
r

mo
nt

eC
ar

lo

Nu
mH

ea
pS

or
t

ra
yt

ra
ce

eu
ler fft

Fo
ur

ier
Te

st

Lu
Fa

cto
r

mo
ldy

n

Ne
ur

alN
et

sh
all

ow

de
cJp

eg

en
cJp

eg

h2
63

de
c

mp
eg

Vid
eo mp

3

Integer Floating point MultimediaBenchmark

N
or

m
al

iz
ed

 E
xe

cu
tio

n

Serial Run Used Wait Used Overhead Run Violated Wait Violated

State Meaning
Serial Time spent not running speculatively
Run-used Committed speculative CPU time used for application computation
Wait-used Committed speculative CPU time waiting to become head or stalling due to buffer overflow
Overhead TLS startup, eoi, restart and shutdown handler overheads
Run-violated Speculative CPU time discarded due to RAW violation used for application computation
Wait-violated Speculative CPU time discarded due to RAW violation spent waiting to become head or stalling due to buffer overflow

Figure 10 – Breakdown of actual speculative execution by time spent in various states.

Programs on the MAJC Architecture. In Java Microarchitectures,
Kluwer Academic Publishers, Boston, MA, April 2002.

[8] Chen, M. and Olukotun, K. Targeting Dynamic Compilation for
Embedded Environments. JVM’02, San Francisco, CA, August
2002.

[9] Chen, M. and Olukotun, K. TEST: A Tracer for Extracting
Speculative Threads. In CGO’03, San Francisco, CA, March
2003.

[10] Cintra, M., Martinez, J. F., and Torrellas, J. Architectural
Support for Scalable Speculative Parallelization in Shared-
Memory Multiprocessors. In ISCA-27, Vancouver, BC, June
2000.

[11] Cintra, M. and Torrellas, J. Eliminating Squashes Through
Learning Cross-Thread Violations in Speculative Parallelization
for Multiprocessors. In HPCA-8, Anaheim, CA, February 2002.

[12] Click, C. High-Performance Computing with the Server
Compiler for the Java HotSpot Virtual Machine. In JavaOne
2001, San Francisco, CA, June 2001.

[13] Culler, D.E. et al. Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufmann Publishers,
San Mateo, CA, 1998.

[14] Emer, J. Ev8: The post-ultimate alpha (keynote address). In
PACT’01, Barcelona, Spain, September 2001.

[15] Gopal, S. et al. Speculative Versioning Cache. In HPCA-4, Las
Vegas, NV, February 1998.

[16] Gosling, J., Joy, B., and Steele, G. The Java Language
Specification. Addison Wesley, Reading, MA, 1996.

[17] Griessemer, R. and Mitrovic, S. The Java HotSpot Virtual
Machine Client Compiler: Technology and Application. In
JavaOne 2001, San Francisco, CA, June 2001.

[18] Gupta, M and Nim, R. Techniques for Speculative Run-Time
Parallelization of Loops. In SC’98, November 1998.

[19] Hall, M. W. et al. Experiences using the ParaScope Editor: an
interactive parallel programming tool. In PPoPP’93, pages 33-43,
May 1993.

[20] Hall, M. W. et al. Maximizing Multiprocessor Performance with
the SUIF Compiler. In IEEE Computer, December 1996.

[21] Hammond, L., Willey, M., and Olukotun, K. Data Speculation
Support for a Chip Multiprocessor. In ASPLOS-VIII, San Jose,
CA, October 1998.

[22] Hennessy, J. L. and Patterson, D. A. Computer Architecture: A
Quantitative Approach, Third edition. Morgan Kaufmann
Publishers, Inc. San Mateo, CA, 2002.

[23] Jones, R. and Lins, R. Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. John Wiley & Sons,
Chichester, UK, 1996.

[24] Kahle, J. Power4: A Dual-CPU Processor Chip. In
Microprocessor Forum ’99, October 1999.

[25] Knobe, K. and Sarkar, V. Array SSA form and its use in
Parallelization. In PoPL’98, San Diego, CA, January 1998.

[26] Ko, W. et al. Effective Cross-Platform, Multilevel Parallelism via
Dynamic Adaptive Execution. In 7th International Workshop on

High-Level Parallel Programming Models and Supportive
Environments. Ft. Lauderdale, FL, April 2002.

[27] Liao, S. W. et al. SUIF Explorer: An Interactive and
Interprocedural Parallelizer. In PPoPP’99, Atlanta, GA, May
1999.

[28] Lindholm, T. and Yellin, F. The Java Virtual Machine
Specification. Addison Wesley, Reading, MA, 1997.

[29] Marcuello, P. and Gonzalez, A. Clustered Speculative
Multithreaded Processors. In ICS’99, Rhodes, Greece, June
1999.

[30] Miller, B. P. et al. The Paradyn Parallel Performance
Measurement Tools. In IEEE Computer, 28(11):37-46,
November 1995.

[31] Muchnick, S. Advanced Compiler Design Implementation.
Morgan Kaufmann Publishers, San Francisco, CA, 1997.

[32] Olukotun, K. et al. The case for a single chip multiprocessor. In
ASPLOS-VII, Cambridge, MA, October 1996.

[33] Olukotun, K., Hammond, L., and Willey, M. Improving the
Performance of Speculatively Parallel Applications on the Hydra
CMP. In ICS’99, Rhodes, Greece, June 1999.

[34] Oplinger, J. T., Heine, D. L., and Lam, M. S. In Search of
Speculative Thread-Level Parallelism. In PACT’99, Newport
Beach, CA, October 1999.

[35] Wu, P. and Padua, D. Containers on the Parallelization of
General-purpose Java Programs. In PACT’99, Newport Beach,
CA, October 1999.

[36] Rauchwerger, L. and Padua, D. The LRPD Test: Speculative
Run-Time Parallelization of Loops with Privatization and
Reduction Parallelization. In PLDI’95, La Jolla, CA, June 1995.

[37] Saltz, J., Mirchandaney, R., and Crowley, K. Runtime
parallelization and scheduling of loops. In IEEE Transaction on
Computers, 40(5):603-612, May 1991.

[38] Sarkar, V. The PTRAN Parallel Programming System. In
Parallel Functional Programming Languages and Compilers,
ACM Press Frontier Series, pages 309-391, 1991.

[39] So, B., Moon, S., and Hall, M. W. Measuring the Effectiveness
of Automatic Parallelization in SUIF. In ICS’98, Melbourne,
Australia, July 1998.

[40] Steffan, J. G. et al. A Scalable Approach to Thread-Level
Speculation. In ISCA-27, Vancouver, BC, June 2000.

[41] Steffan, J. G. et al. Improving Value Communication for Thread-
Level Speculation. In HPCA-8, Cambridge, MA, February 2002.

[42] Tremblay, M. MAJC: Microprocessor Architecture for Java
Computing. In HotChips’99, Stanford, CA, August 1999.

[43] Vijaykumar, T. N. and Sohi, G. S. Task Selection for a
Multiscalar Processor. In MICRO’98, Chicago, IL, August 1998.

[44] Wall, D. Limits of Instruction-Level Parallelism. DEC Western
Research Lab WRL-TN-15, December 1990.

[45] Zhai, A. et al. Compiler Optimization of Scalar Value
Communication Between Speculative Threads. In ASPLOS-X,
San Jose, CA, October, 2002.

