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Abstract 
We describe the Java runtime parallelizing machine 

(Jrpm), a complete system for parallelizing sequential 
programs automatically.  Jrpm is based on a chip 
multiprocessor (CMP) with thread-level speculation 
(TLS) support.  CMPs have low sharing and 
communication costs relative to traditional 
multiprocessors, and thread-level speculation (TLS) 
simplifies program parallelization by allowing us to 
parallelize optimistically without violating correct 
sequential program behavior.  Using a Java virtual 
machine with dynamic compilation support coupled with 
a hardware profiler, speculative buffer requirements and 
inter-thread dependencies of prospective speculative 
thread loops (STLs) are analyzed in real-time to identify 
the best loops to parallelize.  Once sufficient data has 
been collected to make a reasonable decision, selected 
loops are dynamically recompiled to run in parallel. 

Experimental results demonstrate that Jrpm can 
exploit thread-level parallelism with minimal effort from 
the programmer.  On four processors, we achieved 
speedups of 3 to 4 for floating point applications, 2 to 3 
on multimedia applications, and between 1.5 and 2.5 on 
integer applications.  Performance was achieved by 
automatic selection of thread decompositions by the 
hardware profiler, intra-procedural optimizations on 
code compiled dynamically into speculative threads, and 
some minor programmer transformations for exposing 
parallelism that cannot be performed automatically. 

1. Introduction and Overview 
As the limits of instruction-level parallelism (1 – 10s 

of instructions) with a single thread of control are 
approached [44], we must look elsewhere for 
architectural improvements that can speedup sequential 
program execution.  Coarser grained parallelism, like 
fine-grained thread-level parallelism (10 – 1,000s of 
instructions), is a potential area for exploration.  This 
type of parallelism is not exploited today due to 
limitations of current multiprocessor architectures and 
parallelizing compilers. 

Traditional symmetric multiprocessors (SMPs) 
[13][22] have been most effective at exploiting coarse 
grained parallelism (>1,000s of instructions).  The high 
cost of inter-processor communication in these systems, 
generally >100s of cycles, eliminates any potential 
speedups for fine-grained parallel tasks that either have 
true dependencies or closely shared cache lines. 

Modern compilers that perform array dependence 

analysis can parallelize Fortran-like numerical 
applications on traditional multiprocessors 
[2][5][20][38].  Unfortunately, numerous challenges 
have made automatic compiler parallelization of general 
integer programs difficult.   Analyzing pointer aliasing, 
control flow, irregular array accesses, and dynamic loop 
limits as well as handling inter-procedural analysis 
complicate static dependence analysis [3].  These 
difficulties introduce imprecision into dependence 
relations, limit the accuracy of parallelism estimates, and 
force conservative synchronization to safely handle 
potential dependencies. 

Our paper describes the Java runtime parallelizing 
machine (Jrpm), a complete system that automatically 
parallelizes sequential programs using thread-level 
parallelism.  This system takes advantage of recent 
developments that now enable a different approach to 
automatic parallelization for small multiprocessors (2 – 8 
CPUs).  The key components of this system are: a chip 
multiprocessor that provides low-latency inter-processor 
communication, thread speculation support that allows us 
to parallelize optimistically, a hardware profiler for 
identifying parallel loops from program execution, and a 
virtual machine environment where dynamic 
optimizations can be performed without modifying 
source binaries. 

• Chip multiprocessor – Jrpm is based on the 
Hydra chip multiprocessor (CMP) [32].  Decreasing 
feature size and increasing transistor counts now allow 
chip multiprocessors to be a reality [6][14][24][42].  
Chip multiprocessors combine several CPUs onto one 
die with a tightly coupled memory interface.  In this 
configuration, inter-processor sharing and 
communication costs are significantly less than in 
traditional multiprocessors.  The reduced communication 
costs make it possible to take advantage of fine-grained 
thread-level parallelism. 

• Thread-level speculation – Hydra includes 
support for thread-level speculation (TLS) 
[10][21][29][40].  TLS allows a sequential program to be 
divided into arbitrary chunks of code, or threads, to be 
executed in parallel.  TLS hardware ensures memory 
accesses between threads maintain the original sequential 
program order. 

Traditional multiprocessors must synchronize 
conservatively to preserve correctness when static 
analysis cannot determine with complete certainty that a 
dependency does not exist.  For non floating-point 
applications, this makes it difficult to find regions that 
can be parallelized safely and still achieve good 
speedups.  With TLS, it is possible to parallelize 
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aggressively rather than conservatively.  Since sequential 
ordering is guaranteed for parallel execution of any 
program decomposition under TLS, the problem of 
compilation is reduced to finding regions of program 
execution with significant parallelism. 

• Hardware profiler – Static parallelizing compilers 
often have insufficient information to analyze dynamic 
dependencies effectively.  Dynamic analysis to find 
parallelism complements a TLS processor’s ability to 
parallelize optimistically and use hardware to guarantee 
correctness.  Tracer for Extracting Speculative Threads 
(TEST) [9] is hardware support in Jrpm that analyzes 
sequential program execution in real-time to find the best 
regions to parallelize.  This system provides accurate 
estimates of dynamic dependency behavior, thread size, 
and buffering requirements that are needed for selecting 
good decompositions and that would be difficult to 
derive statically.  Estimates show the tracer requires 
minimal hardware additions to our CMP and causes only 
minor slowdowns to programs during analysis. 

• Virtual machine – The Java virtual machine 
(JVM) [28] acts as an abstraction layer to hide dynamic 
analysis and thread-level speculation from the program.  
Virtual machines like the JVM and Microsoft’s .NET 
VM have become commercially popular recently for 
supporting platform independent applications.  Binaries 
are distributed as portable, platform independent 
bytecodes [28] that are dynamically compiled into native 
instructions of the underlying architecture and run within 
the protected environment of the VM.  This virtualization 
allows us to seamlessly support a new execution model 
without modifying the source binaries. 
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Native code 
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codeJIT Compiler
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1 Identify possible thread decompositions by analyzing 
bytecodes and compile natively with annotation 
instructions.

2 Run annotated program sequentially, collecting TEST 
profile statistics on potential thread decompositions.

3 Post-process profile statististics and choose thread 
decompositions that provide the best speedups.

4 Recompile code with TLS instructions for selected 
thread decompositions.

5 Run native TLS code.  
Figure 1 – Block diagram of Jrpm. 

These basic components are used to create a system 
that can automatically compile programs to exploit 
thread-level parallelism.  A block diagram of Jrpm 
outlining how the various software and hardware 
components work together is shown in Figure 1.  The 
compiler derives a control-flow graph from program 
bytecodes and analyzes it to identify potential thread 
decompositions.  A program that has been dynamically 

compiled with instructions annotating local variables and 
thread decompositions is executed as a sequential 
program on a single Hydra processor.  The trace 
hardware collects statistics in real-time for the 
prospective decompositions.  Once sufficient data has 
been collected by the trace hardware, regions predicted 
to have the largest speedup and most coverage are 
dynamically recompiled into speculative threads. 

This dynamic parallelization system has other 
potential benefits: 

• Reduced programmer effort – Explicit coding of 
parallelism is better suited for coarser grained and 
distinct tasks.  Manually identifying fine-grained parallel 
decompositions can be a time-consuming effort for 
programs without obvious critical sections.   

• Portability – The code maintains platform 
independence because the binaries are not modified 
explicitly for thread speculation. 

• Retargetability – Decompositions can be tailored 
dynamically for specific hardware or data.  Different 
decompositions may be chosen for future CMPs with 
more CPUs, larger speculative buffers, and different 
cache configurations.  In some applications, 
decompositions can also be optimized for specific data 
set sizes. 

• Simplified analysis – Compared to traditional 
parallelizing compilers, the Jrpm system relies on more 
hardware for TLS and profiling support, but reduces the 
complexity of the analysis required to extract exposed 
thread-level parallelism. 

Simulations demonstrate Jrpm’s ability to exploit 
thread-level parallelism automatically with minimal 
effort from the programmer.  On our CMP with four 
CPUs, we achieve speedups of 3 to 4 on floating point 
applications, 2 to 3 on multimedia applications, and 
between 1.5 and 2.5 on integer applications.  Selection of 
appropriate thread decompositions by the hardware 
profiler, low-level optimizations on code dynamically 
compiled into speculative threads, and some manual 
programmer transforms for exposing parallelism when it 
cannot be found automatically are all key to getting good 
performance. 

The remainder of this paper details the major 
components of Jrpm and provides results from 
simulation.  Section 2 introduces the Hydra CMP with 
speculation support.  Section 3 describes the hardware 
profiling system used to select good speculative 
decompositions.  Section 4 shows compiler optimizations 
performed on selected speculative thread loops.  Section 
5 explains performance and correctness issues for 
running thread speculation within a JVM.  Section 6 
presents the results of running real programs on Jrpm.  
Section 7 compares related work and Section 8 
summarizes our findings. 

2. CMP with TLS Support 
Hydra [32], shown in Figure 2, is a chip 

multiprocessor consisting of 4 single-issue, pipelined 
MIPS processors, each with private L1 data and 
instruction caches.  High-speed read and write buses 
enable low-latency inter-processor communication that 



 

makes it possible to take advantage of thread-level 
parallelism even when there is substantial inter-processor 
sharing.  An integrated on-chip shared L2 cache 
minimizes cache misses to lower memory when the 
processors work on shared data. 

Table 1 – Thread-level speculation overheads. 
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Work performed 

STL_STARTUP 
(Master CPU 
only) 

41 23 Clear store buffers 
Set speculative event handlers 
Store $fp & $gp 
Wake up slave CPUs 
Enable TLS 

STL_SHUTDOWN 
(Master CPU 
only) 

46 16 Wait to become head CPU 
Disable TLS  
Kill slave CPUs 

STL_EOI 
End-of-iteration 

14 5 Wait to become head CPU 
Commit store buffer 
Clear cache speculation tag bits 
Start new thread 

STL_RESTART 
Violation and 
restart 

13 6 Clear store buffers 
Clear cache speculation tag bits 
Restore $fp & $gp 

Thread-level speculation (TLS) allows a sequential 
program to be divided into threads to be executed in 
parallel.  Data speculation hardware ensures memory 
ordering of the original sequential program is maintained 
by the threads.  Read-after-write (RAW) dependencies 
are guaranteed by forwarding data to sequentially later 
threads, and forcing restarts of threads when a 
speculative thread reads a value too early and sequential 
memory ordering is violated.  By buffering and 
committing speculative writes in threads according to the 
original program order, write-after-write (WAW) 
ordering is maintained.  Finally, buffered writes are only 
available to sequentially later threads, preventing write-
after-read (WAR) violations. 

Speculative thread support in Hydra consists of 
coprocessors for each CPU that control thread 
speculation, extra speculative tag bits added to the 
processor L1 data caches to detect inter-thread data 
dependency violations, and a set of secondary cache 
store buffers to hold speculative data until it can either be 

safely committed to the secondary 
cache or discarded [21].  The physical 
limits of buffered speculative state in 
Hydra are given in Figure 2. 

TLS is controlled in an 
application through special 
instructions that access the 
coprocessor and through special stores 
issued onto the write bus.  For a loop 
transformed into speculative threads, 
there are overheads for starting and 
shutting down speculation, at the end 
of every iteration, and on dynamic 
RAW violations, as shown in Table 1.  
This table shows improvements in the 
software handlers (New) compared to 
overheads reported previously for our 
runtime system (Old).  The significant 
reduction in overheads results from 
improved coding of the speculative 

control routines and more efficient speculation control 
instructions. 

3. Selecting Thread Decompositions 
A speculative thread loop (STL) is a loop 

decomposed into threads, where each loop iteration is 
one thread.  Because hardware guarantees correct 
parallel execution of speculative threads, compiling for 
this execution model involves finding regions in 
programs where thread-level parallelism can be exploited 
within our hardware constraints:     
• Inter-thread data dependencies, or RAW hazards, 

limit parallel execution of speculative threads. 
• Speculative read and write state buffered by the 

hardware can overflow and force speculative 
execution to stall until reads or writes can be 
performed safely (e.g. when the thread becomes the 
non-speculative “head” thread). 

• Code compiled as speculative threads introduces 
overheads from speculation handlers and 
communication of inter-thread (loop-carried) 
dependent local variables.   

• Only one STL (e.g. one loop level in a loop nest) 
may be active at a given time.   
These constraints impose conflicting objectives 

when selecting STLs.   Speculating on small loops limits 
coverage, precludes speculation on outer loops, and 
suffers from proportionally higher speculative thread 
overheads.  Speculating on large loops can increase 
speculation buffer overflows and incur high penalties for 
late RAW violations.   

As discussed earlier, detecting parallelism with 
static compilers in large, general programs is challenging 
[3].  Jrpm relies on dynamic analysis to find parallelism, 
which complements a TLS processor’s ability to 
parallelize optimistically and use hardware to guarantee 
correctness.  The Tracer for Extracting Speculative 
Threads (TEST) [9] profiles sequential program 
execution and collects dependency timing, thread length, 
and speculative buffer usage estimates to find the best 
loops to transform into STLs.  TEST support requires 
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Figure 2 – Block diagram of our CMP.  TLS support blocks shown in dotted lines. 

TEST profile hardware blocks shown in dark blocks.



 

little hardware support and incurs only minimal 
slowdown to programs during analysis.  Section 3.1 is an 
overview of the analysis used to select STLs and Section 
3.2 briefly shows how the analysis is implemented in 
hardware and software. 

3.1 Selecting Good Decompositions 
TEST analysis is applied to any loop which does not 

have any obvious serializing dependency.  TEST 
analysis relies on comparing event timestamps from 
different events during sequential execution to derive 
statistics for a potential STL.   

Two primary analysis are performed by TEST to 
characterize the effects of real constrains on a potential 
STL.  The load dependency analysis looks for inter-
thread dependencies that limit parallelism.  Timestamps 
recorded on previous memory or local variable stores are 
retrieved during a load to the same address and compared 
to thread start timestamps to determine if an inter-thread 
dependency arc exists.  The dependency with the 
smallest arc distance arc is also recorded as the critical 
arc that limits parallelism between the threads. 

The speculative state overflow analysis ensures that 
speculative state for a STL can fit within the L1 caches 
and store buffers, preventing potential TLS stalls due to 
speculative state overflows.  In this analysis, a cache line 
timestamp and cache line tag is recorded for the cache 
line a heap load or store would have hit.  Subsequent 
memory accesses check for a previously recorded cache 
line timestamp with a matching cache line tag.  If no 
timestamp exists or if it is less than the current thread 
start timestamp of a STL, a counter, either the load 
counter for speculatively read cache lines or store 
counter for store buffer entries, is incremented to reflect 
new buffer state required by the current thread.  The 
overflow counter is incremented if either counter for the 
current thread exceeds hardware buffer limits. 

The results of the load dependency analysis and the 
buffer overflow analysis are accumulated over time and 
used to predict the performance of a potential STL.  Two 
heuristics signal that sufficient data has been collected 
for a potential STL:  at least 1000 iterations have been 
executed or outer potential STLs are predicted to 
consistently overflow speculative state. 

Once enough profiling data has been collected, the 
estimated speedup for a STL is computed using average 
dependency arc frequencies, thread sizes, critical arc 
lengths, overflow frequencies and speculative overheads.  
Only loops that have average iterations per entry >> 1, 
speculative buffer overflow frequency << 1, and 
predicted speedups > 1.2 are recompiled into speculative 
threads.  In a loop nest, where we are limited to 
speculating at one loop level at a time, we select the best 
STL from those possible by comparing the estimated 
execution times of speculating at different levels in the 
loop nest. 

3.2 Hardware Profiling Support 
Without hardware support, our simulations indicate 

execution slows over 100x when applying this analysis 

with software alone.  This magnitude of slowdown is 
unacceptable in a real dynamic compilation system, and 
the sizeable software overheads introduce significant 
imprecision into the collected statistics. 
Table 2.  Annotating instructions and associated operations. 

Instruction 
Normal 
operation Annotation (when enabled) 

lw|lb|lbu|lh 
lhu|lwc1 addr 

Load Load 

sw|sb|sh| 
swc1 addr 

Store Store 

lwl vn none Local variable load 
swl vn “ Local variable store 
sloop n “ Start loop 
eoi “ Loop end of iteration 
eloop n “ End loop 

 
li $s1, 10
sloop     1

LOOP_TOP:
lwl 1
blez $s1, LOOP_EXIT
jal call
bnez $v0, IF_FAIL
lwl 1
addi $s1, $s1, -1
swl 1
b         LOOP_EOI

IF_FAIL:
lw $t0, 8($s0)
addi $t0, $t0, 1
sw $t0, 8($s0)

LOOP_EOI:
eoi
b         LOOP_TOP

LOOP_EXIT:
eloop 1
jal READ_STATISTICS

1 Mark start of speculative region 
and allocate 1 local variable 
timestamp slot for lcl_v.

4

Instrumented machine code

int lcl_v = 10;
while( lcl_v > 0 ){

if( call() != 0 ){
lcl_v--;

}
else{

this.val++;
}

}

Original loop

1

4 Mark end of speculative region 
and free local variable 
timestamp. Read collected 
statistics from profiler.

2

2 Local variable annotations mark 
accesses to lcl_v.

3 lw and sw automatically 
communicated to profiler.

3

 
Figure 3 – Example of an annotated loop. 

TEST hardware works when speculation is disabled 
and requires only minor hardware additions to our CMP 
design.  The additions are new annotation instructions to 
be inserted by the dynamic compiler and hardware 
comparator banks that perform the trace analysis.  The 
speculative store buffers, which are idle during non-
speculative execution, hold timestamps for the profiler.  
Estimates indicate the hardware support adds less than 
1% to the total transistor count of Hydra. 

Annotating instructions, listed in Table 2, are 
automatically inserted by the JIT compiler.  The 
compiler derives a control-flow graph (CFG) from Java 
bytecodes.  All natural loops [31] identified from the 
CFG are marked as prospective STLs and denoted with 
special annotations, as illustrated in Figure 3.  After 
compiler optimizations to eliminate unnecessary 
annotations, benchmarks experience an average 7.8% 
slowdown during profiling, and only 2 applications have 
slowdowns approaching 25%, as shown later in Figure 8.  
Higher profiling overheads are seen in some programs 
due to the cost of annotations on potential STLs with 
small loop bodies. 

Store buffers that normally hold writes during 
speculative execution hold timestamps during TEST 
profiling.  The store buffers are statically partitioned so 
that three buffers hold heap access store timestamps, one 
holds cache line timestamps, and one holds store 



 

timestamps to local variables.  An address’ timestamp is 
returned when requested by a memory access or local 
variable annotation. 

The comparator banks carry out the bulk of the real-
time dependency and overflow analyses.  Memory load 
and store instructions and the special annotating 
instructions are automatically communicated through the 
memory system to the banks during profiling.  One 
comparator bank tracks the statistics for one potential 
STL by analyzing timestamps from the executing 
memory and local variable loads and stores.  An array of 
eight comparator banks allows us to analyze multiple 
potential STLs executing simultaneously in loop nests.  
Comparators compare thread start timestamps against 
incoming cache line timestamps to check for speculative 
state overflow and against incoming store timestamps to 
identify critical arcs.  At the end of each thread of a 
potential STL, critical arc lengths, critical arc counts, and 
buffer overflows are accumulated into counters.  The 
accumulated statistics are read from TEST upon exit 
from a potential STL. 

4. Compiling Thread Decompositions 

4.1 microJIT Dynamic Compiler 
Our Java runtime system is based on the open-

source Kaffe VM (http://www.kaffe.org/), but we used our 
own JIT compiler and garbage collector to address 
performance limitations of the original VM.  We 
developed microJIT [8], a fast, dataflow compiler that 
can generate code 30% faster than the Sun-client 
dynamic compiler [17], which performs only limited 
optimizations, and over 10x faster than Sun-server 
compiler [12], an optimizing static single assignment 
(SSA) dynamic compiler [31].  Code generation speed 
was achieved without sacrificing code quality by 
interleaving compilation stages and minimizing compiler 

passes.  Code optimizations performed by our compiler 
include common sub-expression elimination, copy 
propagation, constant propagation, loop invariant code 
motion, inlining and global register allocation.  The 
resulting code generated by microJIT is competitive with 
commercial JIT compilers.  Our experiments that show 
the generated code is 20% faster than Sun-client 
generated code and is within 25% of the performance of 
Sun-server generated code [8]. 

For the Jrpm system, the microJIT compiler was 
augmented to generate speculative thread code.  
Speculative thread control routines from Table 1 are 
inserted into STLs chosen by TEST analysis, as 
illustrated in Figure 4.  In addition to the fixed overheads 
of the speculative handlers, additional overheads may be 
introduced in specific circumstances.  STL initialization 
values must be saved to the runtime stack by the master 
processor and then loaded by the slave processor.  
Cleanup code must be inserted at STL_STARTUP and 
STL_SHUTDOWN by some of the optimizations below.  
Local variables that may cause inter-thread (loop carried) 
dependencies in a STL must be communicated through 
forced loads and stores in the runtime stack.   

4.2 Optimizations for Improving Speculative 
Performance 

Optimizations that improve speculative 
performance, like register allocating loop invariants, 
using non-violating loop inductors, inserting 
synchronization locks, and identifying reduction 
operations, are applied automatically to selected STLs 
when possible.  These compiler optimizations are 
described below. 
4.2.1 Loop invariant register allocation.  Traditionally, 
register allocating loop invariants eliminates the need to 
reload a read-only value every time it is used in a 

sequential loop.  Register allocating loop invariants 
in STLs provides similar benefits, but is a little 
trickier to implement.  On a RAW violation, the 
register state of a speculative thread is unknown 
because it was interrupted in mid-execution.  
Registers must be restored to their original thread 
start value before the thread can be restarted.  One 
possible way of accomplishing this is by 
maintaining a shadow register file that holds the 
thread start register state so that it can be quickly 
restored on restart.  Unfortunately, this approach 
requires a significant amount of extra hardware to 
mirror all the architectural registers and complex 
logic to restore register state in a minimal number 
of cycles.  We accomplish similar functionality with 
software only.  Register allocated loop invariants 
are saved to the runtime stack during TLS startup.  
On a RAW violation, only relevant registers are 
restored by a custom STL_RESTART handler, as 
illustrated in Figure 5. 
4.2.2 Non-communicating loop inductors.  Loop 
induction variables are always incremented the 
same amount in every loop iteration.  Loop 

STL_STARTUP:
scop_cmd enable_spec
mtc2      $fp, saved_fp
b         STL_INIT

STL_RESTART:
scop_cmd reset_cache
smem_cmd kill_buffer
mfc2      $fp, saved_fp

STL_INIT:
<< init code, if any >>

STL_TOP:
bge << cond >>, STL_SHUTDOWN
<< loop body >>

STL_EOI:
scop_cmd advance_cache
smem_cmd commit_buffer_and_head
b         STL_TOP

STL_SHUTDOWN:
scop_cmd disable_spec
smem_cmd commit_buffer

1

4

1 Master CPU enters STL, enables TLS, and wakes up slave CPUs.

2 CPU waits to become the head, or non-speculative CPU, at which point it commits it 
store buffer and then jumps to STL_TOP to start a new thread.

3 On loop exit condition, a speculative CPU jumps here, where it waits to become the 
head processor before disabling speculation, killing slave CPUs, and returning control 
to the sequentially executing master CPU.

4 On a RAW violation, a speculative CPU jumps to STL_RESTART where it kills CPUs 
that are more speculative than itself, discards its store buffers, and then restarts 
execution of the current thread at STL_TOP.

(slave startup/shutdown code omitted)

CPU0
(Master)

CPU1
(Slave)

CPU2
(Slave)

CPU3
(Slave)

3

2

Figure 4 – Illustration of STL code executed by the processors.



 

inductors can be a performance problem for thread 
speculation on loops because they result in a inter-thread 
(loop carried) dependency.  Communication of inductors 
introduces serialization between loop iterations and can 
cause RAW violations.  Previous proposals [11][41][45] 
have used value prediction or scheduling to eliminate 
these negative effects. 

We use software and a simple hardware iteration 
counter to completely eliminate communication of loop 
inductors.  To keep software and hardware requirements 
low, our runtime system distributes loop iterations of a 
STL to processors in a simple round robin order [33].  
For four CPUs, this implies that CPU0 always handles 
iterations 0, 4, 8, …, CPU1 always handles iterations 1, 
5, 9, …, and so forth.  This configuration allows us to 
easily compute the next value of the loop inductor locally 
for the next speculative thread that a processor handles, 
as shown in Figure 5.  Like loop invariant register 
allocation, the value of register allocated inductors must 
be properly recovered after a thread restart.  To achieve 
this, the STL_RESTART handler can compute the correct 
current value of the inductor using a simple counter 
tracking the current speculative thread iteration being 
executed by a CPU. 

4.2.3 Reset-able non-communicating loop inductors.  
Non-communicating loop inductors can also be extended 
to handle variables that look like loop inductors, but 
occasionally have an unpredictable value at an unknown 
loop iteration.  The code to handle this is similar to the 
code to handle normal loop inductors, except that when 
the rare condition is encountered, the correct current 
value is written and a violation and restart is forced to 
later speculative threads.  Within the STL_RESTART 
handler, the restarted speculative threads can then load 
the correct, updated value. 
4.2.4 Thread synchronizing lock.  Previous studies 
have shown that minimizing violation frequency can 
improve TLS performance [11][41].  For a frequent loop 
carried dependency, it is often better to wait for the 
correct value than to get an incorrect one, violate, and 
then have to restart.  We can protect such a variable 
using a synchronization lock that stalls speculative 

threads until the variable has been properly updated, as 
shown in Figure 6.  This lock uses a special instruction, 
lwnv (load word, non-violating), that acts like a normal 
lw to return the most recently written value, even if it is 
speculative, but can never cause a violation and restart.  
Jrpm automatically inserts a synchronizing lock into 
compiled code when the TEST profile result for a STL 
shows a frequently occurring inter-thread dependency 
(e.g. > 80%) that has an average dependency arc length 
much less than the average thread size. 

STL_STARTUP:
sw $r0, 0($fp)
...

STL_RESTART:
...

STL_TOP:
bge $s1, $s2, STL_SHUTDOWN
mfc2      $t0, iteration

STL_WAIT:
lwnv $t1, 0($fp)
bne $t0, $t1, STL_WAIT
<< loop carried dep >>

STL_SIGNAL:
addiu $t0, $t0, 1
sw $t0, 0($fp)

STL_EOI:
...
b         STL_TOP

STL_SHUTDOWN:
...

3

+ Synchronizing lock

lock = 0;
for( i = 0; 

i < limit; 
i++ ){
STL_WAIT( lock );
<< loop carried dep >>
STL_SIGNAL( lock );

}

Original loop 2

2 Spin on lock value using lwnv
(load-word, non-violating) until the 
value is equal to current iteration 
number.

3 After executing the protected 
region, write the next iteration 
number to the lock.

1 Clear lock variable.

1

(slave startup/shutdown code omitted)

 
Figure 6 – Illustration of a thread synchronizing lock. 

4.2.5 Reduction operator optimization.  Reduction 
operations [3], like computing sums or finding min/max 
values, are loop carried dependencies that can be easily 
transformed so they do not result in inter-thread 
dependencies.  Reductions can be computed locally for 
the speculative threads that a given processor is handling.  
The locally computed value from each processor can be 
merged at the end of a STL to get the correct final value. 

STL_STARTUP:
li $t0, 1
sw $t0, 0($fp)
sw limit, 4($fp)
...

STL_RESTART:
...

STL_INIT:
lw $s2, 4($fp)

STL_TOP:
lw $s1, 0($fp)
bge $s1, $s2, STL_SHUTDOWN
<< loop body >>

STL_EOI:
addiu $s1, $s1, 2
sw $s1, 0($fp)
...
b         STL_TOP

STL_SHUTDOWN:
...

STL_STARTUP:
li $t0, 1
sw $t0, 0($fp)
sw limit, 4($fp)
...

STL_RESTART:
...

STL_INIT:
mfc2      $s1, iteration
sll $s1, $s1, 1
lw $t0, 0($fp)
addu $s1, $s1, $t0
lw $s2, 4($fp)

STL_TOP:
bge $s1, $s2, STL_SHUTDOWN
<< loop body >>

STL_EOI:
addiu $s1, $s1, 8
...
b         STL_TOP

STL_SHUTDOWN:
...

STL_STARTUP:
li $t0, 1
sw $t0, 0($fp)
sw limit, 4($fp)
...

STL_RESTART:
...

STL_INIT:
STL_TOP:
lw $s2, 4($fp)
lw $s1, 0($fp)
bge $s1, $s2, STL_SHUTDOWN
<< loop body >>

STL_EOI:
addiu $s1, $s1, 2
sw $s1, 0($fp)
...
b         STL_TOP

STL_SHUTDOWN:
...

+ Non-communicating loop inductors

for( i = 1; 
i < limit; 
i += 2 ){
<< loop body >>

}

Original loop

Base STL assembly + Loop invariant register allocation

1

2

4

3
1 Master CPU stores initial value 

of i = 1 on stack.

2 Load loop invariant in STL_INIT.  
The loop invariant is reloaded on 
a RAW violation since register 
state is unknown after a violation.

3 Load inductor value in STL_INIT
using special iteration register (set 
to zero on STL startup, 
incremented on every thread 
commit).

4 Compute inductor value for next 
thread locally (2*(4 CPUs) = 8).

(slave startup/shutdown code omitted)

Figure 5 – Illustration of two optimizations.  Arrows show how code is moved by the optimizations. 



 

STL_STARTUP

for( ){ // outer loop

<< outer loop body >>

if( rare condition ){

STL_SWITCH_STARTUP

for( ){ // inner loop

<< inner loop body >>

STL_EOI

}

STL_SWITCH_SHUTDOWN

}

STL_EOI

}

STL_SHUTDOWN  
Figure 7 – STL assembly for multilevel STL decompositions. 

4.2.6 Multilevel STL decompositions.  Multilevel STL 
decompositions are useful in irregularly structured nested 
loops, like the one shown in Figure 7.  The two loops 
here both contain significant parallelism, but the inner 
loop, contained within a conditional block, is executed 
infrequently.  We would normally choose to speculate on 
the outer loop, but speculating on the outer loop while 
executing the infrequent inner loop could lead to load 
imbalance between iterations that degrade speculative 
performance. 

Our compiler can insert low-overhead handlers so 
that the selected STL can be switched to the inner loop 
and then restored to the outer loop upon completion of 
the inner loop.  Multilevel STL decompositions can be 
applied automatically when TEST profiling shows that 
the inner loop is executed infrequently (e.g. the loop 
iteration count of the outer loop is much larger than the 
loop entry count of the inner loop). 
4.2.7 Hoisted startup and shutdown routines.  If the 
number of iterations per entry into a STL is low, then the 
overhead of the STL_STARTUP and STL_SHUDOWN 
handlers can be proportionally high.  More than half of 
this handler code wakes up the other CPUs (which are 
idle or interrupted from another process) and initializes 
the speculation hardware.  This code does not need to be 
re-executed in regions of code that may have several 
STLs or when a STL is entered multiple times, like a 
selected STL within a loop nest.  In these cases, startup 
and shutdown overheads can be reduced by hoisting 
some of the STL startup and shutdown handler code to 
the entry and exit of a given method, or to the outer-most 
loop.   

5. Virtual Machine Considerations 

5.1 Exception Handling 
One of the nice properties of thread-level 

speculation is that it preserves the sequential execution 
behavior even for unexpected events like exceptions.  
Threads may generate false exceptions during TLS 
because computations are based on speculative memory 
references (e.g. a thread with a null pointer exception 
may be restarted to execute with different memory 
values).  Consequently, a speculative thread with an 
exception must wait until it becomes the non-speculative 
“head” thread [21].  Only when this happens is the 

exception real and must be handled.  In Java, hardware 
and software exceptions are “thrown” up the call stack 
until it is caught by a catch handler [16].  Nothing 
special needs to happen if an exception thrown during 
speculation is caught within an executing STL by a 
catch handler.  If an exception thrown during 
speculation is not caught within a STL, exception 
handling code must properly terminate speculative 
execution before jumping to an exception handler 
external to the STL. 

5.2 Garbage Collection 
Originally, memory allocation during speculation 

interfered with performance in several benchmarks.  Our 
JVM uses a fast concurrent mark-and-sweep garbage 
collector [23].  Unallocated objects are stored in a linked 
free list.  Allocating objects on every speculative thread 
of a STL caused a serializing dependency on this linked 
list.  To deal with this, we parallelized access to the 
allocator during speculation.  This was achieved by 
maintaining several free lists that can be accessed 
privately by each processor during speculative execution.  
Similar techniques could be applied to prevent serializing 
dependencies in JVMs that use copying garbage 
collectors [23]. 

5.3 Synchronized Objects 
In Java, method invocations can be explicitly 

synchronized to an object (using the synchronized 
keyword [16]) to prevent concurrent accesses from 
multiple explicit Java threads.  A simple object lock will 
cause an inter-thread dependency if it is locked and 
unlocked on every iteration during speculation.  Such a 
lock is unnecessary during speculative execution because 
the correct sequential ordering of accesses by 
concurrently executing speculative threads is guaranteed.  
Unfortunately, object locks cannot be omitted from 
compiled code because they may be compiled into 
methods called from a STL during speculation, but the 
method may also be called during normal non-
speculative execution.  We re-implemented the lock 
routine to prevent object synchronization from causing 
serialization during speculation, while maintaining the 
correct behavior during normal execution. 

6. Performance Results 
Table 3 lists benchmarks we ran on Jrpm, including 

applications from the jBYTEmark (http://www.byte.com/), 
SPECjvm98 (http://www.specbench.org/), Java Grande 
(http://www.epcc.ed.ac.uk/javagrande/javag.html) benchmarks 
suites, as well as real applications found on the internet. 

6.1 Selected Speculative Thread Loops 
Table 3 summarize the characteristics of the STLs 

chosen from analysis.  Overall, we found significant 
diversity in the coverage of selected STLs.  While many 
programs have critical sections, Assignment, NeuralNet, 
euler and mp3 have many STLs that contribute equally to 
total execution time.  Several programs have more 



 

selected STLs (column e) than are shown in the table, but 
the omitted decompositions do not have any significant 
coverage (< 0.5% of total execution time).  mp3, db, jess, 
and DeltaBlue have significant sections of serial 
execution (column i) not covered by any potential STLs 
that limits the total speedup for these applications. 

TLS can simplify program parallelization, but not all 
programs can benefit from it.  Some integer benchmarks 
evaluated using TEST showed no potential for speedup 
using speculation.   Programs with system calls in critical 
code, like I/O intensive programs, currently cannot 
benefit from TLS because system calls cannot be 
handled speculatively in our system.  Several programs 
had loops with characteristics that suggested little or no 
thread-level parallelism.  Pizza, a Java source to 
bytecode compiler, and jack, a parser generator, 
contained loops that were both too large and executed 
too few iterations for speculation.  Richards, a task 
scheduler, contained a serializing dependency within its 
critical STL that could not be optimized.  Of two 
different raytracer programs we looked at, one had a 
parallel loop that was predicted to consistently overflow 
the speculative buffers, while the other had a parallel 
loop that fit within the speculative buffers.  This last 
example suggests that the way a program is written can 
strongly affect how well it can be automatically 
parallelized using TLS. 

The larger programs contain significant numbers of 
loops (column c) that would have made manual 
identification of STLs a time consuming task.  A visual 
analysis of the source code identified that less than half 
of the benchmarks can be analyzed by a traditional 
parallelizing compiler (column a) (e.g. they resemble 
floating point code w/ regular array accesses, no dynamic 
pointers, bounded loops, and little control flow).  The 

average height of selected STLs (column f) have 
granularities larger than the inner-most loop in a loop 
nest.  The maximum loop nesting depth column (column 
d) indicates that eight comparator banks are sufficient to 
analyze most of the nested loop structures in the 
benchmark programs.  When deeply nested loops with a 
depth greater than eight must be analyzed, banks are 
initially allocated to the outer-most loops, but are freed 
to be used by inner loops when the outer loops 
eventually predict speculative buffer overflow. 

Our experiments suggest that our dynamic 
parallelization system can make STL selections that 
account for input data set sizes.  We noticed several 
applications where the best decompositions can change 
according to input data sizes (column b).  In these 
benchmarks, multiple levels of parallelism exist in key 
loops.  Assignment, NeuralNet, LUFactor, euler, and 
shallow use a nested loop to traverse a 2-dimensional 
data array.  For these programs, loops lower in a loop 
nest must be chosen with larger data sets because the 
number of inner loop iterations will rise, increasing the 
probability of overflowing speculative state when 
speculating higher in a loop nest. 

6.2 Speculative Thread Performance  
Each benchmark was run as a sequential annotated 

program on Jrpm with the TEST profiling system 
enabled.  The benchmark was then recompiled and 
executed using speculative threads with the STLs 
selected by TEST.  Figure 8 displays the slowdown 
during profiling, the predicted TLS execution time from 
TEST analysis, and actual TLS performance.  Figure 9 
shows total program speedup (adding compilation, 
garbage collection, profiling, and recompilation 
overheads) compared to serial execution for a given 

Table 3 – Characteristics and performance statistics for benchmarks evaluated with STLs selected by TEST. 
        Characteristics  TEST  TLS Statistics    Speedups from TLS Optimizations     
        (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r ) (s) (t) (u) 
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Integer                           
 Assignment Resource allocation 51x51 N Y 32 5 11 2.0 29 199 1% 1.2 0.2 11% 2%     3%    
 BitOps Bit array operations   N N 4 2 2 1.0 7646 29 0% 1.1 0.8 73% 10%   128%      
 compress Compression   N N 28 4 4 1.8 93755 546 0% 4.1 3.1 2% 1%        42% 
 db Database 5000. N Y 37 5 6 1.7 23142 510 3% 7.8 2.9 2% 2%  5%    29% 31% 44% 
 deltaBlue Constraint solver   N N 22 4 5 2.6 82 501 22% 6.5 2.9 1%         1% 
 EmFloatPnt FP emulation   N N 7 3 1 2.0 255 20127 0% 11.0 9.5        16%   
 Huffman Compression   N N 14 3 6 1.3 502 108 0% 2.0 0.8 18%   2%      65% 
 IDEA Encryption   Y N 2 2 1 2.0 242 6307 0% 1.9 2.2           
 jess Expert system   N N 134 11 4 5.3 166 339 27% 6.6 2.8 1% 1%         
 jLex Lexical analyzer gen   N N 128 6 7 3.0 71 2699 7% 4.1 2.4    1%    11% 8%  
 MipsSimulator CPU simulator   N N 19 4 2 3.5 51931 1313 0% 11.3 4.4 1%        79% 17% 
 monteCarlo Monte carlo sim.   N N 15 3 5 1.4 942 119 5% 2.4 0.8 3%  27% 18%      74% 
 NumHeapSort Heap sort   N N 5 3 2 2.0 6081 555 0% 3.4 3.5 2% 1%        245%
 raytrace Raytracer   N N 14 4 1 1.0 65 158 9% 0.0 0.0 6% 1%         
Floating point                          
 euler Fluid dynamics 33x9 Y Y 32 2 13 1.1 66 304 1% 4.8 1.6 5%       88%   
 fft Fast fourier trans. 1024. Y Y 5 3 2 2.0 187 231 0% 1.4 3.8 2%   8%       
 FourierTest Fourier coefficients   Y N 2 2 1 2.0 100 167802 0% 4.3 3.5           
 LuFactor LU factorization 101x101 Y Y 13 3 7 1.6 64 455 0% 1.9 0.6 3% 2%         
 moldyn Molecular dynamics   Y N 8 2 1 1.0 1026 96 2% 2.0 0.0 10%          
 NeuralNet Neural net 35x8x8 Y Y 19 4 8 1.9 9 617 1% 1.7 2.5 6% 3% 2%        
 shallow Shallow water sim. 256x256 Y Y 11 3 3 1.0 257 1420 0% 7.8 6.2 1%          
Multimedia                         
 decJpeg Image decoder   N N 61 5 21 2.2 34 124 13% 2.5 1.0           
 encJpeg Image compression   N N 62 8 9 1.6 54 121 1% 2.8 1.6 10% 4%         
 h263dec Video decoder   N N 54 5 3 3.0 165 212 10% 4.0 2.2 3%          
 mpegVideo Video decoder   N N 69 8 9 1.4 23 701 47% 4.1 3.7           
 mp3 mp3 decoder   N N 98 6 17 2.3 55 181 14% 3.1 1.4 6%   2%   8%    



 

benchmark run. 
The results show relatively good speculative 

performance for selected STLs.  Overall, TLS execution 
characteristics like average thread size, number of 
threads per loop entry, and speculative buffers required 
(columns g, h, j & k) vary widely from program to 
program.  The average thread size for most benchmarks 
is at least a hundred or more cycles.  Given that our 
experiments were conducted using single-issue MIPS 
cores, the average size of threads is sufficiently large to 
suggest that programs may further benefit from 
superscalar cores that can exploit instruction-level 
parallelism relatively independent of the coarser-grained 
parallelism being targeted by TLS. 

We found the overheads for profiling and dynamic 
recompilation small, even for the shorter running 
benchmarks.  This is possible due to the low-overhead 
profiling system and relatively small amount of collected 
profiling information required to make reliable STL 
choices.  In our benchmarks, selected STLs varied little 
with the amount of profiling information collected once 
enough data was collected to overcome local variations 
in RAW violations, buffer overflows and thread sizes.  
This is due to the fact that most selected STLs were 
invariant to the input data set and the input data sets were 
stable for the duration of the benchmark.  For 
benchmarks with STLs sensitive to input data set sizes, 
changing in mid-execution to a larger input data set 
could cause frequent speculative buffer overflows.  For 
these benchmarks, a potential solution would be trigger 
reprofiling and recompilation when a selected STL 
consistently experiences unexpected buffer overflows. 

Table 3 shows the effect of optimizations and 
improvements that impact all STLs.  Reduced overheads 
improve speculative performance more than 5% on 10 
applications.  Loop invariant register allocation only 
improves performance 2-4% for five applications.  The 
effect of the non-communicating loop inductor is not 
shown because without this critical optimization, 
performance suffers far too much to make a meaningful 
comparison.  While similar benefits of optimizing 
inductor variables in speculative loops were shown by 
[11][41][45], our approach has advantages.  Our scheme 
suffers no overhead for communicating inductors 

because they are computed locally, and is simpler 
because it does not require significant hardware support 
or instruction scheduling. 

 Table 3 shows the effect of specialized compiler 
optimizations and VM modifications on the benchmarks.  
VM modifications appear to have a more significant 
impact.  Parallelizing memory allocator access and 
removing synchronized object locks during speculation 
significantly affects performance on six benchmarks.   

In general, the opportunities to apply compiler 
optimizations are limited to specific STLs in integer 
programs, but the sum impact is significant.  The 
resetable non-communicating loop inductor dramatically 
improves BitOps due to the removal of a loop-carried 
dependency from the relatively small threads in its 
critical STL.  Multilevel STL decompositions improve 
mp3 and, to a much lesser degree, Assignment.  Thread 
synchronizing lock prevents performance-degrading 
violations on monteCarlo and db.  The opportunity to 
apply this optimization is less than we hoped for, but the 
limited impact seems consistent with other studies that 
have looked at techniques for minimizing violations 
[11][41].  The only compiler optimization that seems to 
have little effect is hoisting startup and shutdown 
handlers.  This optimization would likely be most useful 
in a nested loop with small number of iterations per entry 
into the loop.  The two loops in NeuralNet that use this 
optimization do not have the ideal characteristics, and 
only benefit slightly from it. 

Also included in Table 3 is the effect of manual 
transformations to improve speculative performance.  
For six of the integer benchmarks, some programmer 
assistance is needed to expose parallelism.  The 
transformations were achieved with the assistance of 
TEST feedback.  TEST profiling results that summarized 
critical potential STLs and associated dependency arc 
frequencies and lengths facilitated quick identification of 
performance bottlenecks in the source code.  The 
resulting transformations, listed in Table 4, significantly 
improve performance and do not slowdown the original 
sequential execution.  Only three of these benchmarks 
require significant manual transforms, while the other 
three need only trivial modifications.  Examination of the 
program sources suggest most of these modifications can 
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Figure 8 – Shows simulation results of slowdown during profiling, predicted TLS performance, and actual TLS performance on 
the Hydra (4 CPUs) normalized to execution time of the original sequential program. 



 

not be performed automatically because they require 
high-level understanding of the program. 
Table 4 – Difficulty and  potential for compiler automation of 
manual transformations performed that improve speculative 

performance. 

Benchmark 
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Modified operations 

NumHeapSort Low N 7 Remove loop carried 
dependency at top of sorted 
heap 

Huffman Med N 22 Merge independent streams 
to prevent sub-word 
dependencies during 
compression.  Guess next 
offset when uncompressing 
data stream. 

MipsSimulator Med N 70 Minimize dependencies for 
forwarding load delay slot 
value 

db Low Y 4 Schedule loop carried 
dependency  

compress Low N 13 Guess next offset when 
compressing/uncompressing 
data 

monteCarlo Med N 39 Schedule loop carried 
dependency 

Overall, the results show TEST analysis does a 
reasonable job of predicting speculative performance and 
can effectively choose STLs that result in good speedups, 
but differences between predicted and actual speculative 
execution were found.  To further understand the 
discrepancy between predicted and actual TLS 
performance from Figure 8, we looked at time spent in 
various states during speculative execution, shown in 
Figure 10.  The primary differences appear to be from 
effects that cannot be accounted for when predicting 
speculative performance.   

In EmFloatPnt, fft, jLex, and MipsSimulator, 
significant processor time is spent in wait-used state.  
For fft, this comes from buffer overflow stalls for large 
STL iterations.  While TEST analysis properly accounts 
for overflow, its effects are predicted to be smaller 
because the accumulated statistics make iterations that 

overflow appear to be 
smaller.  For EmFloatPnt, 
jLex, and MipsSimulator, 
wait-used state is due to 
load imbalance.  Since 
speculative thread 
iterations must commit in 
order, load imbalance 
forces speculative 
processors to wait if 
iterations ahead of it have 
still not completed.  
Predicted speculative 
performance does not 
account for wait-used state 
because of the averaging 
effects of accumulating 
counters.  

Over ten applications, 
particularly compress, Huffman, and mpegVideo, have 
significant amounts of run-violated and wait-violated 
state that significantly degraded performance.  Since we 
derive predicted speculative performance by computing 
parallelism from ideal scheduling of inter-thread 
dependencies, our analysis does not account for the cost 
of violations.  In actual speculative execution, violations 
near the end of a speculative thread can cause a thread to 
restart and re-execute all its work, thereby losing any 
parallelism that may have existed.  Examinations of 
program sources suggest that thread violations in these 
benchmarks are truly dynamic and cannot be mitigated 
by thread synchronization or value prediction. 

7. Related Work 
The Multiscalar paradigm [15] was the first 

complete description and evaluation of an architecture 
with TLS support.  Several other architectures for TLS 
using CMPs have been proposed [10][21][29][40][42].  
These implementations have mostly targeted coarser 
grains of granularity than the Multiscalar architecture.  In 
a similar vein, software-based dynamic dependence 
detection has been proposed for traditional 
multiprocessor systems as a way to preserve correctness 
for loops executed in parallel that may have complex 
dependency patterns [18][36][37][39]. 

There are numerous commercial and research 
compilers based on array dependence analysis for 
parallelizing Fortran programs [2][5][20][38].  Several 
studies have looked at how these compilers might be 
applied to general programs [4][25][35]. 

There is a growing body of related work on TLS 
compilation addressing different architectures and 
aspects of the problem.  The Multiscalar [43] compiler 
focuses on compile-time heuristics to increase intra-
procedural task sizes and intra-task dependency 
scheduling to increase task parallelism.  These 
optimizations are sufficient for the small threads targeted 
by Multiscalar, but do not address the memory 
disambiguation and decomposition selection difficulties 
of compiling for coarser-grained TLS systems. 

A study of TLS limits by Oplinger et al. [34] and 
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Figure 9 – Total program speedup with compilation, garbage collection, profiling, and 
recompilation overheads. 



 

Steffan and Mowry’s work on the Stampede TLS 
processor [40] have, like us, used simulation and 
profiling to identify good thread decompositions.  These 
studies used cycle-accurate CPU simulators that analyze 
dependencies of all executing memory references to 
deduce performance estimates of potential STLs.  
Neither study specifically addressed how their technique 
could be used for automatic speculative compilation or 
how their analysis could have been performed without 
significant simulation and profiling overheads. 

There has also been research on improving the 
performance of STLs once they are selected.  Several 
studies [11][33][41] showed that minimizing inter-thread 
violations using hardware synchronization and value 
prediction can significantly improve speculative 
performance.  Zhai et al. [45] found that compiler 
scheduling to increase distances between inter-thread 
dependencies is most beneficial for minimizing 
synchronization stall time of induction variables, but 
scheduling of other inter-thread dependencies did not 
improve performance significantly. 

Tremblay et al. previously proposed a JVM system 
with speculative thread support [7][42], but there are 
significant differences from Jrpm.   Their CMP, the 
MAJC processor, has only two processors and only 
supports TLS with inefficient software routines.   They 
also do not propose how speculation can be applied 
automatically to programs. 

There has been other related research that has 
considered how feedback can be used to dynamically 
parallelize programs.  Ko et al. [26] identified optimal 
decompositions through brute-force incremental 
execution of all possible decompositions in multilevel 
parallel programs.  Numerous systems have also been 
designed to manually tune parallel performance on 
traditional multiprocessors [1][19][27][30], but they have 
relied on off-line, not real-time, dependence analysis of 
memory traces. 

8. Conclusions 
Our paper 

describes the Java 
runtime parallelizing 
machine (Jrpm), a 
complete system that 

automatically 
parallelizes sequential 
programs using thread-
level parallelism.  This 
system uses a chip 
multiprocessor, thread-
level speculation, 
hardware profiling, 
and dynamic 
compilation together 
to enable a different 
approach to automatic 
parallelization for 
small-scale chip 

multiprocessors.  Simulation results demonstrate Jrpm’s 
ability to automatically select and optimize appropriate 
thread decompositions with minimal effort from the 
programmer.  On our CMP with four processors, we 
achieve speedups of 3 to 4 on floating point applications, 
2 to 3 on multimedia applications, and between 1.5 and 
2.5 on integer applications. 

Future work will involve trying more applications 
out on Jrpm and further investigation on how much 
profiling is needed before recompilation into speculative 
threads.  We are also looking into new techniques to 
improve performance on applications with significant 
dynamic violation frequencies that cannot be minimized 
by thread synchronization or value prediction. 
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