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Abstract
For transactional memory (TM) to achieve widespread acceptance,
transactions should not be limited to the physical resources of
any specific hardware implementation. TM systems should guar-
antee correct execution even when transactions exceed schedul-
ing quanta, overflow the capacity of hardware caches and physi-
cal memory, or include more independent nesting levels than what
is supported in hardware. Existing proposals for TM virtualization
are either incomplete or rely on complex hardware implementa-
tions, which are an overkill if virtualization is invoked infrequently
in the common case.

We present eXtended Transactional Memory (XTM), the first
TM virtualization system that virtualizes all aspects of transactional
execution (time, space, and nesting depth). XTM is implemented
in software using virtual memory support. It operates at page gran-
ularity, using private copies of overflowed pages to buffer mem-
ory updates until the transaction commits and snapshots of pages
to detect interference between transactions. We also describe two
enhancements to XTM that use limited hardware support to ad-
dress key performance bottlenecks. We compare XTM to hardware-
based virtualization using both real applications and synthetic mi-
crobenchmarks. We show that despite being software-based, XTM
and its enhancements are competitive with hardware-based alter-
natives. Overall, we demonstrate that XTM provides a complete,
flexible, and low-cost mechanism for practical TM virtualization.

Categories and Subject Descriptors C.1.4 [Processor Architec-
tures]: Parallel Architectures

General Terms Design, Performance

Keywords Chip Multi-processor, OS Support, Transactional Mem-
ory, Virtualization

1. Introduction
As multi-core chips become ubiquitous, it is critical to provide
architectural support for practical parallel programming. Transac-
tional Memory (TM) simplifies concurrency management by sup-
porting parallel tasks (transactions) that appear to execute atom-
ically and in isolation [10]. By virtue of speculation, TM allows
programmers to achieve good parallel performance using easy-to-
write, coarse-grain transactions. Transactions also address other
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challenges of lock-based code such as deadlock avoidance and fail-
ure isolation.

There are several proposed architectures that implement TM us-
ing hardware caches for data versioning and coherence protocols
for conflict detection [18, 6, 2, 17]. Nevertheless, for TM to become
useful to programmers and achieve widespread acceptance, it is im-
portant that transactions are not limited to the physical resources of
any specific hardware implementation. TM systems should guar-
antee correct execution even when transactions exceed schedul-
ing quanta, overflow the capacity of hardware caches and physical
memory, or include more independent nesting levels than what the
hardware supports. In other words, TM systems should transpar-
ently virtualize time, space, and nesting depth. While recent appli-
cation studies have shown that the majority of transactions will be
short-lived and will execute quickly with reasonable hardware re-
sources [2, 3], the infrequent long-lived transactions with large data
sets must also be handled correctly and transparently.

Existing TM proposals are incomplete with respect to virtual-
ization. None of them supports nesting depth virtualization, and
most do not allow context switches or paging within a transaction
(TCC [6], LTM [2], LogTM [17]). UTM [2] and VTM [19] pro-
vide time and space virtualization but require complex hardware
and firmware to manage overflow data structures in memory and to
facilitate safe sharing among multiple processors. Since long-lived
transactions are not expected to be the common case [3], such a
complex and inflexible approach is not optimal.

This paper presents the first comprehensive study of TM virtu-
alization that covers all three virtualization aspects: time, space,
and nesting depth. We propose eXtended Transactional Memory
(XTM), a software-based system that builds upon virtual mem-
ory to provide complete TM virtualization without complex hard-
ware. When a transaction exceeds hardware resources, XTM evicts
data to virtual memory at the granularity of pages. XTM uses pri-
vate copies of overflowed pages to buffer memory updates until
the transaction commits and snapshots to detect interference be-
tween transactions. On interrupts, XTM first attempts to abort a
young transaction, swapping out transactional state only when un-
avoidable. We demonstrate that XTM allows transactions to survive
cache overflows, virtual memory paging, context switches, thread
migration, and extended nesting depths. XTM can be implemented
on top of any of the hardware transactional memory architectures.
The combination is a hybrid TM system that provides the perfor-
mance advantages of a hardware implementation without resource
limitations.

XTM supports transactional execution at page granularity in the
same manner that page-based DSM systems provide cache coher-
ence at page granularity [25, 21]. Unlike page-based DSM, XTM is
a backup mechanism utilized only in the uncommon case that hard-
ware resources are exhausted. Hence, the overheads of software-
based virtualization can be tolerated without a performance impact
on the common case behavior. Compared to hardware-based vir-
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tualization, XTM provides flexibility of implementation and lower
cost.

In the base design, XTM executes a transaction either fully
in hardware (no virtualization) or fully in software through page-
based virtual memory1. Conflicts for overflowed transactions are
tracked at page granularity. If virtualization is frequently invoked,
these characteristics can lead to large overheads for virtualized
transactions. To reduce the performance impact, we also present
two enhancements to the base XTM system. XTM-g allows an over-
flowed transaction to store data both in hardware caches and in vir-
tual memory in order to reduce the overhead of creating private
page copies. XTM-e allows conflict detection at cache line granu-
larity, even for overflowed data in virtual memory, in order to re-
duce the frequency of rollbacks due to false sharing. XTM-g and
XTM-e require limited hardware support, which is significantly
simpler than the support necessary for hardware-based virtualiza-
tion [17, 2]. XTM-g and XTM-e perform similar to hardware-based
schemes like VTM, even for the most demanding applications.

Overall, this paper describes and analyzes the major tradeoffs
in virtualization for transactional memory. Its major contributions
are:

• We propose XTM, a software-based system that is the first to
virtualize time, space, and nesting depth for transactional mem-
ory. XTM builds upon virtual memory and provides transac-
tional execution at page granularity.

• We develop two enhancements to XTM that reduce the over-
heads of page-based virtualization: XTM-g that allows gradual
overflow of data to virtual memory and XTM-e that supports
conflict detection at cache line granularity.

• We provide the first quantitative evaluation of TM virtualization
schemes for a wide range of application scenarios. We demon-
strate that XTM and its enhancements can match the perfor-
mance of hardware virtualization schemes like VTM [19] or
TM systems that use serialization to handle resource limita-
tion [6].

Overall, this work establishes that a software, page-based approach
provides an attractive solution for transparent TM virtualization.

The rest of this paper is organized as follows. Section 2 re-
views the requirements and design space for TM virtualization.
Section 3 summarizes existing hardware-based approaches. Sec-
tion 4 describes the base XTM design, while Section 5 presents the
two enhanced XTM systems. Sections 6 and 7 present qualitative
and quantitative comparisons between XTM and hardware virtual-
ization schemes. Finally, Section 8 presents related work, and Sec-
tion 9 concludes the paper.

2. Design Considerations for TM
Virtualization

While the various TM architectures differ in the way they oper-
ate, their hardware structure is similar. They all track the transac-
tion read-set and write-set in the private caches (L1 and potentially
L2) of the processor executing the transaction [18, 6, 2, 17]. Mem-
bership in either set is indicated using additional state bits (meta-
data) associated with each cache line. The data for the write-set
are also stored in the caches. Conflicts between concurrently exe-
cuting transactions are detected during coherence actions for cache
lines that belong to the write-set of one transaction and the read-set
of another. More recent proposals support nested transactions that
can rollback independently [14]. Tracking the read-set and write-

1 When one transaction overflows, non-overflowing transactions continue
executing in the hardware mode.

set for nested transactions requires an additional tag per cache line
to identify the nesting depth. This hardware support for transac-
tional memory is sufficient if transactions do not exceed the capac-
ity of caches, never exceed the supported nesting depths, are not in-
terrupted, nor are migrated between processors. However, this case
cannot be guaranteed because of multiprogrammed operating sys-
tems and the desire for software that is portable across different
hardware implementations.

TM virtualization allows transactions to survive cache over-
flows, virtual memory paging, context switches, thread migration,
and extended nesting depths. Virtualization is achieved by plac-
ing transactional state (read-sets and write-sets) in virtual memory,
which provides processor-independent, location-independent, and
practically infinite storage. Depending on the case, we may place
some of the transactional state in virtual memory (e.g., on a cache
overflow) or all of it (e.g., on a context switch).

A good virtualization scheme should satisfy the following re-
quirements with respect to correctness and performance. First, it
should be completely transparent to the user. Second, it should
preserve transactional atomicity and isolation under all circum-
stances. Third, it should not affect the performance of the common
case when virtualization is not needed. Finally, virtualized transac-
tions should have no significant effect on the performance of non-
virtualized transactions executing concurrently.

While the data for virtualized transactions are always stored in
virtual memory, there are several design options to consider for the
mechanisms that implement data versioning, conflict detection, and
commit for virtualized transactions2. Table 1 summarizes the ad-
vantages of the major alternatives for each mechanism. The basic
choices are between a) hardware vs. software implementation (per-
formance vs. cost and flexibility), b) cache line vs. page granularity
(storage efficiency and performance vs. complexity), and c) eager
vs. lazy operations (performance vs. isolation). While it is difficult
to quantitatively evaluate all reasonable combinations of the above
options, this paper aims at characterizing the design space for TM
virtualization sufficiently so that major conclusions can be drawn.

If performance was the only optimization metric, it is obvious
that a virtualization system should be hardware-based and should
handle data at cache line granularity. We discuss the proposed sys-
tems that follow this approach in Section 3. However, a virtualiza-
tion system is by nature a backup mechanism, only invoked when
the hardware mechanisms are no longer sufficient. Recent studies
show that the majority of transactions will not exceed the hard-
ware capabilities [2, 3]. Chung et al. [3] showed that, when trans-
actions are used for non-blocking synchronization, 98% of them
require less than 22 Kbytes for read-set and write-set buffering.
About 95% of transactions include less than 5,000 instructions and
are unlikely to be interrupted by external events (context switches,
interrupts, paging, etc.). When transactions are used for specula-
tive parallelization, they showed that read- and write-sets get sig-
nificantly larger, but that the capacity of an L2 cache (e.g., 128
Kbytes) is rarely exceeded. The rare occurrence of transactions re-
quiring virtualization implies that one’s choices in architecting a
virtualization system should better balance performance and cost.
We propose such systems in Sections 4 and 5.

3. Hardware-based Virtualization
In this section, we review proposals for hardware-based TM virtu-
alization.

UTM: The UTM system was the first to recognize the impor-
tance of virtualizing transactional memory [2]. It uses cache line

2 There are similar design options for hardware support for TM. However,
this paper focuses exclusively on the design tradeoffs in TM virtualization.
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Data Versioning Conflict Detection Commit

Implementation Hardware Low per access overhead Overlap with other work Low overhead
Software No ISA/HW changes needed Flexibility in conflict resolution Supports transactional I/O

Granularity Cache line Low memory/BW requirements Less false sharing Low overhead
Page Reuse paging mechanisms No ISA/HW changes needed Amortize overheads better

Timing Eager Fast commits Early detection N/A
Lazy Fast aborts Guaranteed forward progress N/A

Table 1. TM virtualization options for data versioning, conflict detection, and transaction commit. Each cell summarizes the advantage of
the corresponding implementation, granularity, or timing option.

granularity, eager versioning, and conflict detection. UTM supports
space and time virtualization, but does not virtualize nesting depth.

Unlike most other proposals that start with a limited hardware
TM system and add virtualization support, UTM starts with a vir-
tualized system and provides some acceleration through caching.
UTM relies on the XSTATE data structure in virtual memory, which
is a log with information on the read- and write-set of executing
transactions. Portions of the XSTATE can be cached by each pro-
cessor for faster access. The UTM implementation is rather ideal-
ized as it assumes all memory locations are appended with a pointer
to XSTATE. On cache misses, a processor must always follow the
pointer to detect conflicts. It also relies on the availability of global
virtual addresses, which are not available in most popular architec-
tures. Overall, UTM is space inefficient and incurs significant over-
heads even in some common cases (e.g., cache miss, no conflict).
The same paper introduces LTM, a more practical TM system that
allows transactions to overflow caches, but does not allow them to
survive virtual memory paging, context switches, or migration [2].

VTM: VTM uses hardware and firmware mechanisms to pro-
vide virtualization at cache line granularity with eager conflict de-
tection and lazy versioning [19]. It supports space and time vir-
tualization, but does not virtualize nesting depth. For each pro-
cess, VTM defines the XADT data structure in virtual memory.
The XADT is organized as a hash table and contains an overflow
count, the overflowed data (including metadata), and a bloom filter
(called the XF) that describes which addresses have overflowed to
the XADT. When a hardware cache overflows, VTM evicts a cache
line into the XADT and appropriately updates the overflow count
and the filter. On a context switch, VTM evicts the entire read- and
write-set for the transaction to the XADT. Conflict detection and re-
fills for evicted data occur on demand when transactions experience
cache misses. However, the XADT is only searched if the overflow
count is non-zero and the XF filter returns a hit. Commits or aborts
for data in the XADT happen lazily: VTM atomically sets the sta-
tus of transactions to committed or aborted and does the transfer to
memory or XADT clean up at a later point.

VTM provides fast execution when virtualization is not needed
by caching the overflow count and XF in an additional hardware
cache. It also provides for fast execution when virtualizing, as it
uses hardware to evict cache lines to the XADT and search the
XADT for conflicts or refills. Nevertheless, the performance ad-
vantages of VTM comes at a significant complexity cost. First, the
hardware must be aware of the organization of the XADT, so the
XADT must be defined in the instruction set, similar to how the
page table organization is defined in ISAs if hardware TLB refills
are desired. Second, in order to allow overflows to the XADT with-
out trapping into the OS for reverse translation, VTM must append
each cache line with its virtual page number. For 32-byte cache
lines, this implies a 10% area increase for data caches. Third, the
hardware must provide coherence for the cached copies of the over-
flow count and the XF in each processor. Also, these cached copies
must be consistent with updates to the XADT. For example, a pro-
cessor incurring a miss must receive the answer to its coherence
miss requests before checking the overflow counter. Otherwise, one

can construct cases where a conflict is missed due to a race be-
tween an XADT eviction and a counter update. Overall, updating
the counter and the XF must be done carefully and, in several cases,
accesses to these structures should act like memory barriers or ac-
quire/release instructions for relaxed consistency models.

LogTM: LogTM operates at cache line granularity and uses ea-
ger versioning and conflict detection [17]. It allows transactions to
survive cache overflows, but not paging, context switches, or ex-
cessive nesting. LogTM uses a cacheable, in-memory log to record
undo information that is used if a transaction aborts. Hence, an
overflowed cache line is written back to main memory directly
without allocation additional storage in virtual memory. An over-
flow bit set in the cache to allow the processor to check for conflicts
when requests for this line arrive from other processors. The over-
flow bit may lead to some false positives in conflict detection.

4. eXtendend Transactional
Memory (XTM)

The XTM system provides space, time, and nesting depth virtual-
ization while meeting all the requirements introduced in Section 2.
XTM is software-based and operates at the OS or virtual machine
level. The only hardware requirement for the base XTM is that
an exception is generated when a transaction overflows hardware
caches or exceeds the hardware-supported nesting depth. XTM
handles transaction read-sets and write-sets at page granularity. It
uses lazy versioning and conflict detection.

4.1 XTM Overview
With XTM, a transaction has two execution modes: all in hardware
(no virtualization) or all in software (virtualized). When the hard-
ware caches are filled, XTM catches the overflow exception and
switches to virtualized mode, where it uses private pages from vir-
tual memory as the exclusive buffer for read- and write-set. Switch-
ing first aborts the transaction in hardware mode, which clears all
transactional data from hardware caches, and then restarts it in vir-
tualized mode. While aborting introduces re-execution overhead, it
eliminates the need for an expensive hardware mechanism to trans-
fer the physically-addressed transactional data in caches to virtual
memory. XTM also marks invalid the entries in the data TLB for
the processor executing the overflowed transaction. No other trans-
actions are affected by the switch.

In the virtualized mode, XTM catches the first access to each
page through a page-fault and creates on-demand copies of the
original page in virtual memory. By operating on copies, the vir-
tualized transaction is isolated from any other transactional or non-
transactional code. We create two copies of the original page: the
private page is created on first access (load or store) and the snap-
shot page is created just before the first store by copying the private
page. The private page buffers data updates by the transaction until
it commits successfully (lazy versioning). The snapshot is a pris-
tine copy of the original page in memory at the time the transaction
started accessing it and is used for conflict detection. If a page is
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Figure 1. The Virtualization Information Table (VIT). The white
box belongs to level 0, and the gray boxes belong to level 1.

never written, we avoid creating the snapshot as the private page is
sufficient.

When creating the copies, XTM uses non-cached accesses for
two reasons: to avoid recursive overflows and to avoid caching
the metadata for overflowed transactions, which typically have low
temporal locality. In fact, XTM works like a streaming program:
it reads data, applies a simple operation, and writes them back
in a sequential order. Most modern instruction sets support non-
cached accesses by providing a bit in each page-table entry that the
software can use to indicate if a page is cachable or not at this point.
Once the necessary copies are created by XTM, the transaction can
access data directly through loads/stores, with caching enabled, and
without the need for XTM to intervene.

A virtualized transaction checks for conflicts when it is ready
to commit (lazy conflict detection). Control is transferred to XTM
using a commit handler [14]. XTM detects conflicts by comparing
each snapshot page to the original page in virtual memory similar to
backward-oriented validation developed in database literature [5].
If the contents of the two pages differ, a conflict is signaled and
the virtualized transaction is rolled back by discarding all private
pages. If all snapshots are validated, we commit the transaction by
copying its private pages to their original locations.

XTM uses two private data structures to track transactional
state. First, a per-transaction page table provides access to the pri-
vate copies of pages in the read-set or write-set of the transaction.
Assuming a hierarchical organization, this page-table is not fully
populated. Instead, it is allocated on demand and consists only of
the translation entries necessary for TM virtualization. For every
virtual page, the page table points to the physical location of the
private copy. The second structure is the Virtualization Information
Table (VIT), which is shown in Figure 1. The VIT is organized as a
hash table and contains one entry per page accessed at each nesting
level. An entry holds pointers to the private and snapshot pages,
metadata indicating if it belongs in the read-set or write-set, and
the pointers necessary for the hash table and to link related entries
(see Section 4.2). The VIT is queried using a virtual address and a
nesting depth. It can also be traversed to identify all private copies
for a transaction at a specific depth.

4.2 XTM Space and Depth Virtualization
Figure 2 presents an example of space and depth virtualization us-
ing XTM. After an overflowing transaction is aborted, XTM allo-
cates a per-transaction page-table and a VIT, both initially empty
(¶). When the transaction restarts in virtualization mode and at-
tempts to read its first page, XTM creates a private page and a VIT
entry. The newly allocated private page is pointed to by both the
VIT and the page table, and the R bit is also set in the VIT entry
(·). On the first transactional write to the page, a snapshot page is

created, the VIT entry is updated, and the W bit is set (¸). If the
first transactional access had been a write instead of a read, XTM
would have executed steps (·) and (¸) together.

When a nested transaction begins in virtualized mode, we need
to independently track its read- and write-set. Hence, we allocate a
new per-transaction page table independent from that of its par-
ent transaction (¹). With the new table, XTM catches the first
read/write to a page by the nested transaction without walking the
parent’s table to change access permissions. The new page table is
also only partially populated. On the other hand, we do not allocate
a new VIT. Nested reads (º) and nested writes (») are handled like
those of the parent transaction. The first nested read creates a new
VIT entry that points to the parent’s private page. If this is the first
time this page is accessed at any depth, we create a new private
page. On the first nested write, a new snapshot of the private page
is created, and the modification goes to the private page. If multi-
ple transactions in the nest access the same page, we have multiple
linked VIT entries and multiple snapshots, but the private page is
shared among the parent and all its nested children.

When the nested transaction needs to commit, it validates its
read-set. The read-set is all snapshot pages and all read-only private
pages. Validation involves comparing all pages in the read-set to the
current state of the pages in memory. If validation is successful (no
differences), the transaction commits by merging its transactional
metadata with that of its parent. Finally, the per-transaction page
table for the nested transaction is discarded. If validation fails,
the transaction is rolled back by discarding all VIT entries at that
level and its page table. Modified private pages are rolled back
using snapshots. When the outermost transaction (nesting depth 0)
commits, we copy all private pages to the original locations and
merge the private page table’s metadata bits into the master page
table.

To make the outermost commit atomic, a transaction must gain
exclusive access of all its virtualized pages. There are multiple
ways to support such functionality. One way is to serialize com-
mit while still allowing concurrent execution. In TCC [6], commit
serialization is achieved by acquiring the commit token. For other
systems, one can use TLB shootdown to give overflowed transac-
tions exclusive access to validation pages. At the arrival of a shoot-
down message, non-XTM transactions will be rolled back only if
they have a conflict with the committing transaction. An excep-
tion handler is immediately invoked and executed as an open-nested
transaction [14]. The handler searches the cache for lines already
accessed that belong to the evicted page. Alternatively, the TLB
can maintain additional R/W bits in each entry that allow the TLB
shootdown handler to quickly check for conflicts. The R/W bits
are not part of the PTE entry. One can devise an adaptive protocol
that selects between the two options for atomic commit, if both are
available. The protocol will decide based on the number of pages
committed and the expected impact of serialization or TLB shoot-
downs. The writes used to copy private pages into original loca-
tions must be snooped by hardware to check conflicts for pending
hardware-mode transactions.

4.3 XTM Time Virtualization
XTM also handles events that require process swapping (e.g., con-
text switches or process migration). Once a transaction is in virtu-
alization mode, all its state is in virtual memory and can be paged
in and out on demand.

Other events, like I/O interrupts, require interrupt handling, be-
fore resuming user code. Existing TM virtualization schemes [2,
19] propose swapping out transactional state on such interrupts.
Since most transactions are short [3], XTM uses an alternate ap-
proach, shown in Figure 3, that avoids swapping overhead in most
cases. First, XTM waits for one of the processors to finish its cur-
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Figure 3. Interrupt handling in XTM.

rent transaction and then assign it to interrupt processing. Since
most transactions are short, this will probably happen quickly. If
the interrupt is real-time or becomes critical, we abort the youngest
transaction and use its processor for interrupt handling. When we
restart the transaction, we use the hardware mode. If a transaction
is restarted many times due to interrupts, we restart it virtualized so
further interrupts will not cause aborts. The latter case only happens
if all transactions in the system are long, which is very rare [3].

To implement this process on an interrupt, the interrupt con-
troller launches the OS scheduler to a statically selected core or one
selected dynamically based on its current status. The scheduler runs
in its own transactional context using an open nested transaction so
that the transaction executing on this processor is not affected. The
scheduler consults XTM to select a core to run the actual interrupt
handler based on the process in Figure 3.

4.4 Discussion
XTM can be implemented either in the OS as part of the virtual
memory manager or between underlying TM systems and the OS,
like virtual machines [27]. Its only hardware requirements are ex-
ceptions for virtualization events (e.g., cache overflow, exceeding
nesting depth, etc.). XTM implements per-transaction page tables,
which can be cheaply realized by copying and modifying only the
portion of the master page table containing the addresses accessed
by the overflowed transaction. For example, XTM in x86 starts with
a 4KB empty page directory and augments it with second-level
4KB page tables as needed. Since XTM is software-only, all its
policies and algorithms can be tuned or changed without affecting
the processor ISA.

Long virtualized transactions are more likely to abort due to
interference. Fairness between overflowed transactions and un-
overflowed ones depends on the validation scheme. The validation

scheme based on TLB shootdown provides a chance for software
to control fairness at conflict detection. Either the un-overflowed or
the overflowed transactions can be selected to rollback with a pri-
oritization policy such as aging. In the scheme with the TCC token,
the token arbitrator can assign a high priority to the overflowed
transactions to prevent starvation [6].

To reduce the overheads, XTM can allocate a number of virtual
memory pages for each processor at the beginning of the program.
These pages can be used by XTM on demand for private copies and
snapshots, avoiding the overhead of allocation unless the number of
pre-allocated pages proves insufficient.

5. Enhanced XTM Schemes
We now introduce XTM-g and XTM-e that use a limited set of
hardware features to reduce the overhead of virtualization.

5.1 XTM-g
On a cache overflow in the base XTM design, we abort the transac-
tion and switch to virtualized mode; this incurs large penalties. In
XTM-g, a transaction overflows to virtual memory gradually, with-
out an abort. Hardware handles the data accessed by the transaction
up to now, and any new data are tracked in the virtual memory
system. XTM-g is especially beneficial when the hardware caches
overflow frequently by a small amount of data.

When virtualized, a transaction buffers state in both hardware
and virtual memory. To distinguish the two, we introduce the over-
flow or OV bit to page table entries3, TLB entries, and cache lines.
If OV is set, the corresponding data have been virtualized. Upon
eviction, data that do not belong in the read-set or write-set of any
transaction are evicted as usual. If a line accessed by a transaction
is evicted, XTM-g copies the line to a private page and marks its
OV bit in the page table. It is possible for virtualized lines to re-
enter the hardware caches, in which case the OV bit is set in the
cache. Lines with the OV bit set can simply be evicted from the
cache, since they are already virtualized.

Figure 4 illustrates XTM-g. In this example, the hardware cache
has three lines written by a transaction, where two of them belong
to the same page. When one of the two lines is evicted because
of an overflow, an exception is raised and the XTM-g software
starts. It first uses reverse translation to find the virtual address for
the overflowed line. Then it creates the private page and snapshot,
updates the VIT, and writes the evicted data to the private page.
Before returning, XTM-g queries the cache about other lines from
the same virtual page and finds the other line. It is also evicted to the
private page and their metadata are placed in the VIT. Finally, the

3 Several architectures, such as x86, provide a few bits per page table entry
for future uses.
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Figure 4. Example of space virtualization with XTM-g. The transaction starts with three modified cache lines. ¶ When a line is evicted
because of overflows, the transaction is not aborted. A private page and a snapshot are made (since the line is modified), the OV bit is set in
the PT, and the line is copied. · When the evicted line is reloaded in the cache, the line’s OV bit is set. ¸ The line is re-evicted to the private
page without an eviction exception. ¹ XTM-g commits first, then º the hardware TM (HTM) commits.

OV bit of the page is set in the page table so cache lines that re-enter
the cache will have their OV bit set. By the end of this process, the
transaction has one page in virtual memory while the rest is still in
the hardware cache (¶). If other overflows occur, more pages can
be moved to virtual memory as needed. Once evicted, the cache
lines are reloaded with the private page address and their OV bit
set in the cache (·). When they are re-evicted, cache eviction logic
checks their OV bits. Since the bits are set, they are allowed to
be evicted to the private page without an eviction exception (¸).
To properly commit such a transaction, the hardware TM system
must support a two-phase commit protocol [14]. Once validation of
hardware-tracked data is complete, control is transferred to XTM-g
to validate the pages in virtual memory. If that validation passes, we
first commit the data in virtual memory (¹) and then return to the
hardware system to commit the cache data (º). Essentially, XTM-g
runs as a commit handler [14].

5.2 XTM-e
XTM and XTM-g operate at page granularity and are prone to
aborts due to false sharing: a transaction may abort because it read a
word in the same page as a word committed by another transaction.
XTM-e allows cache line-level tracking of read- and write-sets,
even for overflowed data. First, each VIT entry is made longer to
have one set of R and W bits per cache line in the page. XTM-e
evicts cache lines to virtual memory similar to XTM-g, but also
sets the fine-grain R/W bits in the VIT using the metadata found in
the cache. Second, XTM-e must handle the case where a cache line
in a virtualized page is accessed later.

A naı̈ve solution would be to switch to software on every access
to a page with the OV bit set in the TLB in order to update the VIT
entry. To avoid this unnecessary overhead, XTM-e uses an eviction
log buffer (ELB). The ELB is a small hardware cache, addressed
by cache line address, that stores a tag and the R and W bits for a
cache line. When a line from an OV page is accessed, we note the R
or W metadata in the ELB without interrupting the user software.
When the ELB overflows due to associativity or capacity issues,
we merge the metadata in all valid ELB entries into the proper VIT
entries. In other words, the ELB allows us to amortize the cost of an
exception over multiple cache lines. If the ELB does not fill until
the transaction completes, we transfer metadata from the ELB to
the VIT before the validation step. During validation, XTM-e uses
the fine-grain R/W bits available to determine which cache lines
within a snapshot or private page should be compared with the
original page in memory to check for conflicts. Overall, XTM-e
improves on XTM-g by eliminating most of the false sharing,
which is common if pages are sparsely accessed by transactions.

6. Qualitative Comparison
Here, we provide a qualitative comparison between the software-
based XTM system and the hardware-based VTM system [19].
Table 2 summarizes the key differences. Note that VTM does not
provide virtualization of nesting depth.

Hardware Cost and Memory Usage: The only HW require-
ment for XTM is an exception when virtualization is needed.
XTM-g requires OV bits in page tables and caches, while XTM-e
adds the ELB as well. On the other hand, VTM require significant
hardware components and complexity: a cache for its overflow
structure (XADT), hardware walkers for the XADT, and hardware
to enforce coherence and consistency for the overflow counter and
the filter. Unfortunately, the complexity of VTM goes beyond mi-
croarchitecture. The XADT organization and any software visible
issues about the way it is cached (e.g., consistency) must become
part of the ISA.

On the other hand, XTM can lead to memory usage issues as it
requires storage for the per-transaction page table, the VIT and the
private/snapshot copies. Even though the page tables are not fully
populated, the XTM space requirements will be higher than that
for VTM, particularly if transactions overflow hardware caches by
a few cache lines. VTM uses memory space only for the XADT,
which is a hash table for evicted cache lines.

Implementation Flexibility: XTM is implemented purely in
software. XTM-g and XTM-e have small and simple hardware re-
quirements. Since most of these three systems is in software, there
is significant flexibility in tuning their policies and integrating them
with the operating system. On the other hand, VTM requires both
hardware and firmware, which means that there little flexibility in
data structure organization, underlying coherence protocols for the
XADT caching, etc. Nevertheless, the hardware implementation of
VTM allows for better performance isolation between virtualized
transactions and non-virtualized transactions. With XTM, making
the software commit atomic can cause stalls to other transactions
from the same process. Nevertheless, processors executing transac-
tions from other processes are never affected, which is particularly
important.

Performance: So far we have argued that XTM and its en-
hancements provide lower hardware cost and better flexibility than
VTM. Hence, the question becomes how they compare in per-
formance. If the software-based XTMs can also provide compet-
itive performance, then they have an edge over the hardware-based
VTM.

The base XTM system can introduce significant overheads.
When XTM virtualizes a transaction, it starts with an abort. The
necessary re-execution can be expensive for long transactions. Of
course, these overheads are important if virtualization events are
often. If this is the case, XTM-g (eliminates aborts for switch)
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XTM XTM-g XTM-e VTM
Virtualization space, time, nesting depth space, time

HW Cost OV exception OV exception, OV bit OV exception, OV bit, ELB XADT walker, XADT cache,
virtual tags in caches

SW Cost VIT, page tables, extra copies per accessed page XADT, XSW, XF, overflow count
Switch Overhead transaction abort OS handler HW handler

Other Overheads page copying, page copying, accessing XADT/XF,
page comparisons cache line comparisons XF/count consistency

Sensitivity page occupancy, false-sharing page occupancy XF miss ratio
Flexibility pure SW mostly SW mostly HW

Table 2. A qualitative comparison between XTM, XTM-g, XTM-e, and VTM.

and XTM-e (reduces aborts due to false sharing) will be necessary
for the XTM approach to be competitive. XTM also benefits from
applications that access most of the data in each page they touch, as
this makes page copying operations for versioning or commit less
wasteful.

On the other hand, VTM’s overhead comes mostly from access-
ing the XADT when the XF filter misses. Hence, the case when
VTM can be slow is when many transactions overflow and search-
ing, inserting, and deleting in a large XADT becomes too slow.
Note that manipulating the VIT is faster, as each entry is for a whole
page, not a cache line. Furthermore, the VIT is private to each trans-
action, while the XADT is shared within a process; hence, some
synchronization is needed for the XADT across processors. In all
other cases, VTM provides fast virtualization as it avoids switching
to OS handlers and operates on data at fine granularity. Again, this
is particularly important if virtualization events are often.

For time virtualization, XTM has a better process that avoids
swapping transactions in many cases. On the other hand, VTM al-
ways swaps out transactional state, even to run a short interrupt
handler. Hence, VTM can be inefficient for handling frequent in-
terrupts.

7. Quantitative Comparison
We compared XTM to VTM using an execution-driven simulator.
To our knowledge, this is the first quantitative analysis of TM virtu-
alization. Table 3 shows the simulation parameters for our experi-
ments. The simulator models a CMP with 16 single-issue PowerPC
processors. For an underlying hardware TM system, we used TCC
because it allows transactions to be used for both non-blocking syn-
chronization and thread-level speculation [6]. The latter case leads
to larger transactions likely to stress hardware resources. Each pro-
cessor can track transactional state in its 32KB, 4-way associative
L1 data cache (32B lines) [3]. A 16-entry victim cache is used as
a simple mechanism to eliminate most of the conflict misses [15].
The simulator captures the memory hierarchy timing, including all
contention and queuing.

As mentioned in section 4.4, XTM can be implemented in the
virtual memory module of an OS or a virtual machine. We imple-
mented XTM as privileged software module invoked in our sim-
ulated system by event handlers as described in [14]. For exam-
ple, commit handlers invoke XTM if the transaction is virtualized.
XTM is written in C and PowerPC assembly and is approximately
3,000 lines of code. It takes about 1,400 dynamic instructions to
overflow a page gradually for XTM-g/e. The base XTM restarts
an overflowed transaction instead of overflowing pages gradually.
For XTM and XTM-g, it takes about 2,300 instructions per valida-
tion and 1,400 instructions per commit per page. Instruction counts
for XTM-e vary by page occupancy. Dynamic instruction counts
can be reduced using unrolling and/or SIMD instructions for faster
page copying (Altivec [4], SSE [26], etc.).

Feature Description

CPU 16 PowerPC cores,
200 cycle exception handling overhead

Cache Private, 4-way, 32KB, with 32B lines
Victim Cache 16 entries
Main memory 4KB page, 100 cycle transfer latency

Bus 16B wide, 3 cycle arbitration,
3 cycle transfer latency

Table 3. Parameters for the simulated CMP.

We also implemented VTM as a hardware extension to the sim-
ulator (XADT walker, coherence for XF and overflow count, etc.).
Our experiments focus on virtualization events when a single ap-
plication runs on the CMP—we did not conduct multiprogramming
experiments.

We used three parallel benchmarks from SPLASH2 [28] (radix,
volrend, and water-spatial) and one from SPLASH [23] (mp3d),
which used transactions to replace locks for non-blocking synchro-
nization and use mostly small transansactions. We also used two
SPEC [24] benchmarks (equake and tomcatv), which use transac-
tions for speculative parallelization at the outermost loop which re-
sults in many long transactions. To explore other interesting pat-
terns not generated by the six applications, we also designed a mi-
crobenchmark to produce randomized accesses with a desired aver-
age transaction length, size of read-/write-sets, and nesting depth.

7.1 Space Virtualization
Figure 5 presents a performance comparison between XTM and
VTM for space virtualization (i.e., overflow of hardware caches).
We have omitted mp3d, water-spatial, and equake because they
never overflow with a 32KB cache and thus experience no virtu-
alization overheads with the studied schemes. It is expected that
short transactions that run successfully without virtualization will
be the common case [3]. The microbenchmark was configured with
three average read-/write-set sizes, where -Pn means accessing a
uniformly random number of pages between 1 and n, inclusive.

Figure 5 shows the breakdown of the execution time for each
virtualization scheme relative to VTM. The overhead is broken
down into time spent for data versioning, committing, and valida-
tion (conflict detection). The cycles not used by the schemes are
categorized into three items: useful time for committed work, vi-
olation time for the cycles lost due to violations, and idle time.
For radix and micro-P10, the base XTM works well and intro-
duces overhead of less than 6%. For the rest of the programs,
XTM introduces significant overhead due to the transaction aborts
when switching to virtualized mode and due to the time neces-
sary to make the private and snapshot copies. However, XTM-g
and XTM-e reduce the overhead of XTM significantly and make
it comparable to that of VTM (less than 0.5% for several cases).
Note that the results from the microbenchmark show the idle time
varying across the schemes. It is due to the barrier placed at the end
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Figure 5. Execution time breakdown for space virtualization. For tomcatv, XTM’s validation is 0.3× and versioning is 5.1×. The left set of
bars is with a 32KB transactional state buffer, and the right set of bars shows the effect of larger buffers. Times are normalized to VTM with
a 32KB buffer, and the bracketed numbers show the percentage of overflowed transactions.

of the parallel execution to synchronize the threads. Buffer over-
flows randomly introduced by the threads easily break load balanc-
ing around the barrier, forcing the threads with fewer overflows to
wait a long time at the barrier.

The overhead breakdown for volrend and radix is shown en-
larged in Figure 6. For volrend, VTM performs better, while for
radix, XTM-e is the fastest. The reason is the time spent searching
for overflowed data. VTM’s data versioning cycles come from time
spent overflowing data to the XADT and then accessing it again
later. On the other hand, the XTMs’ data versioning cycles come
from changing the address mapping of overflowed pages to point
directly to the corresponding private pages. For programs that re-
peatedly access overflowed data, search time is more significant
than overflow time.

With tomcatv, all virtualization schemes lead to relatively large
overheads. Other programs contain only a few transactions that
overflow, but in tomcatv, a larger number of transactions require
virtualization, with multiple transactions overflowing concurrently.
VTM leads to virtualization overhead of 6%. Despite relying
mostly on software, XTM-e and XTM-g perform reasonably well
and lead to an overhead of 9%.

So far we have assumed that hardware can store transactional
state only in the 32KB L1 data cache. However, one can also place
transactional state in the L2 cache, reducing the frequency of over-
flow. Figure 5 shows the impact of cache space available for trans-
actional buffering. If 64KB are available, tomcatv, volrend, and
micro-P10 do not generate any overflows and all schemes lead to
0% overhead. For the remaining benchmarks, larger HW capacity
means less-frequent overflows, hence the overhead of virtualiza-
tion drops. At 128KB, no real application has any overflows and
only micro-P30 requires 256KB before it shows the same behavior.
Overall, the conclusion is that if the L2 cache is used to buffer trans-
actional state, even applications that use TM for speculative paral-
lelization of outer loops will rarely overflow hardware resources.
Hence, the small overhead increase due to a software virtualization
system like XTM is no longer significant.

7.2 Memory Usage
Table 4 measures the memory requirements of the virtualization
schemes. For XTM, we measure the maximum number of VIT
entries and extra pages needed for copies per transaction. For VTM,
we count the maximum number of XADT entries per transaction,
and we compare the number of VIT and XADT entries, which
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Figure 6. Overhead time breakdown for XTM-g, XTM-e, and
VTM normalized to VTM.

affects the searching latency for both data structures. Since XTM
has a VIT entry per page, the number of VIT entries is much smaller
than the number of VTM’s XADT entries. No benchmark uses
more than 39 VIT entries, while some benchmarks use up to 17,000
XADT entries. The bulk of the memory overhead for XTM comes
from the private and snapshot page copies. However, no benchmark
uses more than 700 copies for base XTM (2.8MB) or 386 pages for
XTM-e and XTM-g (1.5MB). For VTM, the XADT must store 32B
cache lines and metadata. Hence, for a maximum of 17,300 entries,
the XADT will occupy about 650KB. In summary, despite using
page granularity, XTM does not have unreasonable memory usage
requirements for any modern system.

7.3 Time Virtualization
To compare XTM to VTM with time virtualization, we simulated
the arrival of I/O interrupts every 100,000 cycles. On an interrupt,
we need to find a processor to execute its handler. We set the han-
dler size to zero cycles, so all the overhead is due to switching in
and out of the handler. VTM suggests that when an interrupt ar-
rives, a transaction is swapped out to virtual memory to provide
a processor for the handler. For XTM, we evaluated two policies.
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Benchmark XTM XTM-g XTM-e VTM
tomcatv 21 (439) 15 (257) 15 (254) 4025
volrend 33 (316) 19 (136) 19 (139) 238
radix 21 (124) 7 (23) 8 (27) 779
micro-P10 19 (350) 9 (86) 9 (90) 1396
micro-P20 29 (495) 18 (207) 18 (202) 8039
micro-P30 39 (700) 28 (386) 28 (380) 17319

Table 4. Memory pressure. This table shows the maximum num-
ber of XADT entries for VTM and the maximum number of VIT
entries for XTM. The maximum number of extra pages used by
XTM is enclosed in parentheses.
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Figure 7. Execution time with time virtualization normalized to
VTM. ‘+’ stands for our time virtualization mechanism described
in Section 4.3.

One is the VTM policy (abort transaction, restart later in virtual-
ized mode). The other is the three-stage interrupt handling process
explained in Section 4.3 that avoids virtualization unless necessary
to guarantee forward progress.

Figure 7 shows the overhead introduced by the virtualization
scheme as interrupts occur within a program. The reference is the
case where no interrupts are raised. The XTM bar assumes the
VTM swap-based policy. The XTM+ bar assumes the proposed ap-
proach that first attempts to abort and retry a young transaction in
hardware mode. The absolute percentage of overhead is not particu-
larly interesting as we set the handler to be empty. What is interest-
ing is the relative comparison between the different schemes. In all
cases, using XTM with the policy that favors aborts over swapping
leads to lower overheads even when compared to the hardware-
based VTM. The proposed approach essentially eliminates trans-
action swapping. Using VTM’s swapping approach with the XTM
system leads to the highest overheads as swapping in XTM is ex-
pensive.

7.4 Depth Virtualization
None of our programs use a nesting depth that exceeds what the
hardware can support (2 to 4 nesting levels) [14]. Hence, to measure
nesting virtualization overhead we used a microbenchmark that
generates nesting depths that exceed the hardware support. Table 5
shows the execution time overhead as we vary the percentage of
deeply nested transactions that exceed the hardware capabilities
from 0.5% to 5%. This range is reasonable given a recent study that
found that most programs have less than 1% nested transactions
overall and the average nesting depth for that subset is 2.2 [3].

For this experiment, we measure only the base XTM as VTM
does not support nesting depth virtualization and XTM-g and
XTM-e behave identically to the base XTM. The overhead is mea-
sured against a simulation with hardware suport for infinite nesting
levels. The execution time overhead for XTM is 2.7% and 5.9%

Nesting Versioning Validation Commit Total
Freq. Overhead
5% 42.86% 2.32% 0.42% 45.60%
2% 16.61% 0.84% 0.16% 17.61%
1% 5.54% 0.27% 0.06% 5.87%
0.5% 2.60% 0.12% 0.02% 2.74%

Table 5. Nesting depth virtualization overhead.
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Figure 8. Normalized execution time for XTM and serialization-
based virtualization. Total execution time is normalized to that with
XTM-g.

when the frequency of nested transactions is 0.5% and 1% re-
spectively. Hence, XTM can efficiently virtualize deeply nested
transactions they are uncommon. On the other hand, at 2% and
5% frequency of deeply nested transactions, XTM lead to 17.6%
and 45.6% overhead respectively. If deeply nested transactions be-
come that frequency, we should probably revisit the hardware and
provide direct support for additional levels of nesting. Note that
in many cases, it is functionally correct to flatten nested transac-
tions when the hardware support is exceeded. Nesting virtualization
should be reserved for cases where independently aborting a nested
transaction may change the program functionality (e.g., the nested
transaction need not be re-executed after aborting). Open-nested
transactions should always invoke virtualization if the hardware
resources are exceeded.

7.5 Comparison to Serialization Schemes
Certain TM architectures use transaction serialization to provide
space virtualization [6]. When a transaction overflows the con-
tention manager or commit arbiter guarantees that it will com-
mit. Hence, the transaction can overflow updates directly to non-
transactional memory without the need for additional data struc-
tures for virtualization. Other transactions that conflict with the
overflowed transaction are forced to roll back as if the over-
flowed transaction had already committed. One can also extend this
scheme to provide time virtualization by allowing the metadata for
overflowed cache lines to be stored in non-transactional memory as
well. There are two basic disadvantages of such an approach. From
the point of view of functionality, this scheme requires that an over-
flowed transaction will never attempt to roll back voluntarily (e.g.,
call abort). Moreover, it means that overflowed transactions do not
provide fault atomicity. From the point of view of performance,
this scheme limits scalability by preventing the other transactions
from committing when an overflowed transaction is running. On
the other hand, such as scheme allows transactional execution to
happen in parallel with one commit and involves no software over-
heads.

To look into the performance issue, we compared XTM and
XTM-g to the original TCC that uses the commit token for se-
rialization on a cache overflow. Figure 8 shows the total execu-
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Figure 9. Execution time for TCC+XTM and XTM-only normal-
ized to TCC+XTM.

tion time for the original TCC versus TCC+XTM, normalized to
TCC+XTM-g which performs the best. The serialization scheme
outperforms XTM for radix and volrend by 20% to 40%. Corre-
lating this result with Table 4 produces an interesting observation.
The big difference in the number of the pages used by XTM and
XTM-g is a good indicator that XTM may incur a very high over-
head for a specific application. Compared to XTM-g, XTM uses
additional pages to re-execute the portion of the transaction until
the first overflow. If most transactions that exceed hardware re-
sources overflow nearly at their ends, XTM will experience sig-
nificant overhead while the serialization scheme will handle them
without a major slowdown. On the other hand, applications such as
tomcatv have long-lived transactions that overflow early and by a
lot. In this case, commit serialization is a major performance bot-
tleneck.

Overall, Figure 8 demonstrates that serialization-based schemes
do not lead to significant and consistent performance improvements
that justify the functionality issues.

7.6 XTM-only Transactional Memory
The mechanisms of the base XTM can provide transactional exe-
cution semantics without any hardware support. Hence, instead of
using XTM as a virtualization scheme for a hardware TM system,
we can use XTM on its own as a software TM (STM) implementa-
tion. Conventional STM systems require that all code that may exe-
cute within a transaction is recompiled to insert the proper read and
write barriers that allow the TM runtime to provide atomicity and
isolation [22, 1, 8]. On the other hand, XTM is transparent to the
user and can work with any binaries as atomicity and isolation are
provided at the operating system level using page-granularity op-
erations. Transparency is one of the main advantages of hardware
TM systems over software implementations. If XTM on its own can
provide sufficiently good performance for transactional execution,
it can eliminate the need for a hardware TM architecture.

Figure 9 shows a performance comparison between XTM when
used with a hardware TM system (TCC+XTM) and XTM used
independently as an STM (XTM-only). Each of the three bench-
marks represents a different scenario: no overflows with micro-P5,
rare overflows with micro-P7, and frequent overflows with tom-
catv. From the figure, the fewer overflows an application has, the
larger the performance gap between TCC+XTM and XTM-only.
Rare overflows allows the application to spend more time in hard-
ware mode; thus, as 6.6% of the transactions overflow in micro-P7,
TCC+XTM runs 3.1 times faster than XTM-only. In the extreme
case of no overflows (micro-P5), TCC+XTM is 8.3 times faster.
There are two factors that account for the slowdown of XTM-only.
One is a higher overhead for TM suport in software only mode

shown as the increment of versioning and validation cycles. The
other is frequent violations from false sharing due to page-granular
conflict check all the time shown as the increment of violation cy-
cles. This result suggests that, while cost-effective, XTM may best
be used as a backup mechanism from the viewpoint of balancing
performance and cost. It is interesting to note that the performance
gap between TCC+XTM and XTM-only is unlikely to be as large
as that between hardware TM and software TM as TCC+XTM has
the additional overhead of switching execution mode from TCC to
XTM at overflows.

8. Related Work
Proposed software TM implementations also provide transactional
semantics without hardware constraints as they are always built on
top of virtual memory [22, 7, 9, 13, 1]. This paper focuses on vir-
tualization for hardware TM systems because they provide transac-
tional semantics with minimal overheads and make the implemen-
tation details transparent to software. XTM can also be seen as a
hybrid TM system, as it supports transactions in both hardware and
software modes. Unlike [11] and [16] that use user-level software
and compiler support, XTM uses kernel-mode software. XTM is
completely transparent to all levels of user software (application
and compiler).

XTM builds upon the research on page-based, cache-coherent
DSM systems [25, 21]. Unlike page-based DSM, XTM is a backup
mechanism utilized only in the uncommon case when hardware re-
sources are exhausted. XTM also draws on research that uses vir-
tual memory to implement transactional semantics for the purpose
of persistent storage [20, 12].

9. Conclusions
For transactional memory to achieve its potential as a technology
that simplifies parallel programming, virtualization of transactional
hardware is necessary. Transactions must be able to overflow hard-
ware, survive interrupts and context switches, and deal with ar-
bitrary nesting depths without compromises in functionality and
transactional semantics.

This paper presented eXtended Transactional Memory (XTM)
as the first mechanism to virtualize all three TM aspects: space,
time, and nesting depth. XTM is a software-only approach that re-
quires no hardware support since, in the common case, virtualiza-
tion will likely be invoked infrequently. XTM operates at the oper-
ating system level and handles transactional state at the granularity
of pages. We also presented two enhancements to the base XTM,
XTM-g and XTM-e, that use limited hardware support to address
basic performance overheads if overflows become more frequent.
Finally, we provided the first quantitative evaluation of TM virtu-
alization schemes, which included all three XTM schemes and a
hardware-based alternative (VTM). We found that, despite being
software based, the XTM designs provide similar performance to
VTM with the cache sizes easily affordable in modern multi-core
chips (e.g., 32KB). Even for demanding applications, emulated by
microbenchmarks in our experiments, XTM-g and XTM-e show
competitive or better performance than VTM. We also compared
XTM to schemes that use serialization to provide virtualization and
studied its performance without a hardware TM substrate. Overall,
XTM provides a fully-featured and flexible solution for the virtu-
alization of TM hardware at a low complexity cost. Using XTM,
software developers can develop simpler parallel code that runs on
TM architectures and is not limited by any implementation-specific
constraints.
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